Il logo di batmath
www.batmath.it
pag.precedente | pag.successiva

Funzioni continue

Ci occupiamo ora di un "raffinamento", in un certo senso, della nozione di limite. Precisamente ci poniamo la seguente domanda: dato un punto c del dominio di una funzione e considerato il corrispondente valore f(c), i punti "vicini" a c hanno immagine "vicina" a f(c)? La risposta è negativa, come si può vedere da alcuni degli esempi di funzione che abbiamo proposto (per esempio la funzione f(x)=|signum(x)|,dove i punti vicini a zero hanno una immagine vicina ad uno, mentre si ha  f(0)=0). In sostanza l'esistenza del limite garantisce che all'avvicinarsi di x ad una dato valore c, la y si avvicina ad un certo valore l, che non ha nulla a che fare con l'eventuale valore assunto dalla funzione nel punto c (dove la funzione potrebbe benissimo non essere definita). Ora invece ci preoccupiamo di controllare se, all'avvicinarsi di x a c, la y si avvicina esattamente ad f(c).

Si dà la seguente definizione

Una funzione img si dice continua in un punto c del suo dominio se, img, ovvero, in maniera equivalente, se, img è un intorno di c.

Si osservi che, in base alle definizioni di punto isolato e di limite, si ha:

imgSe il punto c è isolato la funzione è automaticamente continua in c, se invece il punto c è di accumulazione la definizione precedente equivale a dire che img.

Si noti come, a differenza di quanto succede nella definizione di limite, qui il punto c deve essere un punto del dominio della funzione: altrimenti non avrebbe senso calcolare f(c).

Esempi:

Rovesciando un po' il modo di procedere da noi adottato si può osservare che il limite di una funzione in un punto c può essere considerato come la soluzione del seguente problema:

imgData una funzione img e considerato un punto c (appartieneR) di accumulazione per D, ma non appartenente a D, il limite della funzione per x tendente a c, se esiste, è l'unico valore che si può attribuire a f in c, in modo da ottenere una funzione definita anche in c e continua in c.

Una funzione non continua in un punto c del suo dominio si dice anche discontinua, o singolare, in c. Il concetto di singolarità è però di solito utilizzato con significato più generale come si vedrà .

Il concetto di funzione continua è di grande importanza nel calcolo dei limiti. Se infatti si riesce a concludere che una funzione è continua in un punto c del suo dominio, allora il calcolo del limite, in c, è banale: questo è esattamente quello che succede in molte delle situazioni più frequenti nelle applicazioni.

link a top pagina

Funzioni continue su intervalli

Hanno molto interesse nelle applicazioni le funzioni continue su intervalli. Per esse valgono i seguenti teoremi, di importanza fondamentale:

Teorema di Weiertsrass: Se una funzione è continua in un intervallo chiuso e limitato essa ammette ivi sia il massimo che il minimo assoluto. 

Teorema degli zeri: Se una funzione è continua in un intervallo chiuso e limitato e assume valori di segno opposto agli estremi, allora esiste almeno un punto c interno all'intervallo dove la funzione si annulla.

Il teorema di Weierstrass vale anche se l'insieme non è un intervallo, purché sia chiuso e limitato (compatto), ma questi concetti esulano dallo scopo di questa monografia.

Per quanto riguarda le funzioni continue su intervalli, spesso si usa dire che la continuità è esprimibile geometricamente con la condizione che la curva grafico della funzione si può tracciare "senza staccare la penna dal foglio".  La nozione, seppur significativa in casi elementari, non ha alcuna giustificazione, come mostra la funzione img che è ovunque continua, ma che non può essere tracciata in quanto la sua lunghezza è infinita, anche se ci si limita ad una piccolo intervallo circondante lo zero. La cosa diventa ancora più drammatica se si considerano funzioni come la scala diabolica, o altre che intervengono nello studio dei frattali.

link a top pagina

Algebra delle funzioni continue

É una conseguenza immediata dei teoremi sull'algebra dei limiti che la somma, il prodotto, il quoziente di due funzioni continue è ancora una funzione continua.

Si tenga però presente che, come osservato anche a proposito dell'analogo problema sui limiti, la somma (il prodotto, il quoziente) di due funzioni non continue può benissimo essere continua. Si vedano gli esempi che seguono:

link a top pagina

Continuità della funzione composta

Siano date due funzioni f e g, tali che si possa considerare la composta img. Vale il seguente fondamentale teorema:

Se f è una funzione continua in un punto c e g è continua nel punto f(c), allora la funzione composta img è continua in c.

La dimostrazione è una conseguenza quasi immediata della definizione.

Poniamo a=f(c) e b=g(a)=g(f(c)). Preso un intorno U di b, V=g -1(U) è un intorno di a per la continuità di g, mentreT =f-1(V)=f-1(g -1(U)) è un intorno di c per la continuità di f.  Se teniamo conto che img, si conclude subito.

Si noti che anche questo teorema esprime solo una condizione sufficiente: la composta di due funzioni non continue può benissimo essere continua. Basta prendere, ad esempio, per f una funzione qualunque e per g una funzione costante: la composta sarà costante e dunque continua

link a top pagina

Funzioni inverse e continuità

Una funzione è invertibile se (e solo se) è biunivoca. La continuità impone delle condizioni molto restrittive alle funzioni invertibili. In particolare:

Se una funzione è definita su un intervallo ed è ivi continua, allora essa è invertibile se e solo se è crescente [decrescente]. Inoltre la funzione inversa è anch'essa continua e crescente [decrescente].

Osservazioni:

link a top pagina

pag.precedente | pag.successiva
pagina pubblicata il 07/12/2002 - ultimo aggiornamento il 01/09/2003