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Sommario

There are several separate competitions in Hungary. The oldest modern mathematical
competition, not only in Hungary but also in the world, is the Kürschák Mathematical
Competition, founded in 1894, but known as Eötvös Mathematical Competition until
1938. This competition is for students up to the first year of university and consists of 3
problems. This competition changed its name from Eötvös to Kürschák after the second
world war. The Eötvös was not held in the years 1919,1920,1921,1944,1945,1946. The
Kürschák was not held in the year 1956.
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1. Eötvös Competitions

In 1894 baron Roland Eötvös was asked to serve as mini-
ster of education in the Hungarian government, to help
the acceptance of civil rights and religious freedom in
the Hungarian Parliament. The Hungarian Mathemati-
cal and Physical Society decided, that, to commemorate
this period, launches yearly competitions to secondary
school graduates. This has got the name Eötvös Com-
petition. It was organized first in the fall of 1884, and
it runs in every year (with the exception of a few war
years).

The problems given at this competitions are intended to assess the creativity (and not
the memorized knowledge) of the students. The problems have to be solved in a closed room,
supervised by impartial observers, within an afternoon. The respect of this competition is
created, among others, by the fact that the 10 bests in mathematics and the 10 bests in
physics have free admission to the university. (It has to be noted that students are accepted
at scientific, engineering and medical faculties only after passing very competitive entrance
examinations. The Eötvös Competition offers a route for wild talents to the university.) The
actual organization of the Eötvös Competition happens mostly at the Eötvös University un-
der the patronage of the Eötvös Society. Local physics competitions are organized in several
districts of Hungary.

Among the prize winners one finds the names of Theodore von Kármán in mathema-
tics (1897), Leo Szilard in physics (1916), Edward Teller, in both, mathematics and physics
(1925), in physics together with Laszlo Tisza, John Harsanyi in mathematics (1937), Ferenc
Mezei in physics (1960), and so on. These names indicate the century-long tradition.

The problem-solving student journal, Középiskolai Matematikai és Fizikai Lapok was
launched in the same year. This journal is published by the Eötvös Society in thousands of
copies monthly.
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The respect of the Eötvös Competition is expressed by the fact that John von Neumann
tried to introduce a similar competition in Germany in the 1920s, furthermore Gabriel Sze-
gõ (the Hungarian mathematics professor at Stanford University) organized competitions in
California, following the pattern of the Eötvös Competitions, after World War 2. At the
centenary celebration Kai-hua Zhao stressed that the Eötvös Competition might be consi-
dered as the forerunner of the International Physics Student Olympiads. These Olympiads
were created at joint Czech-Hungarian-Polish initiative in 1964, now students from about 50
countries participate on them. In 1991 the International Union for Pure and Applied Phy-
sics gave its educational medal to the Physics Olympiad and to its three initiators. Inspired
by the Student Olympiads, nowadays national student competitions are organized in many
countries.
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1st Eötvös Competition 1894

Organized by Mathematical and Physical Society

1. Prove that the expressions
2x+ 3y and 9x+ 5y

are divisible by 17 for the same set of integral values of x and y.

2. Given a circle and two points, P and Q: construct an inscribed right triangle such that
one of its legs goes through the given point P and the other through the given point
Q. For what position of the points P and Q is this construction impossible?

3. The lengths of the sides of a triangle form an arithmetic progression with difference
d. The area of the triangle is t. Find the sides and angles of this triangle. Solve this
problem for the case d = 1 and t = 6.
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2nd Eötvös Competition 1895

Organized by Mathematical and Physical Society

1. Prove that there are 2
(
2n−1 − 1

)
ways of dealing n cards to two person. (The players

may receive unequal numbers of cards.)

2. Give a right triangle ABC, construct a point N inside the triangle such that the angles
∠NBC, ∠NCA and ∠NAB are equal.

3. Given the following information about a triangle: the radius R of its circumscribed
circle, the length c of one of its sides, and the ratio a/b of the lengths of the other two
sides; determine all three sides and angles of this triangle.
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3rd Eötvös Competition 1896

Organized by Mathematical and Physical Society

1. Prove that
log n ≥ k · log 2

where n is a natural number and k the number of distinct primes that divide n.

2. Prove that the equations

x2 − 3xy + 2y2 + x− y = 0

and
x2 − 2xy + y2 − 5x+ 7y = 0

imply the equation
xy − 12x+ 15y = 0.

3. Construct a triangle, given the feet of its altitudes. Express the lengths of the sides of
the solution triangle Y in terms of the lengths of the sides of the solution triangle X
whose vertces are the feet of the altitudes of triangle Y .
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4th Eötvös Competition 1897

Organized by Mathematical and Physical Society

1. Prove, for angles α, β and γ of a right triangle, the following relation:

sinα sinβ sin(α− β) + sinβ sin γ sin(β − γ) + sin γ sinα sin(γ − α)+
+ sin(α− β) sin(β − γ) + sin(γ − α) = 0

2. Show that, if α, β and γ are angles of an arbitrary triangle,

sin
α

2
sin

β

2
sin

γ

2
<

1
4

3. Let ABCD be a rectangle and let M , N and P , Q be the points of intersections of
some line e with the sides AB, CD and AD, BC, respectively (or their extensions).
Given the points M , N , P , Q and the length p of side AB, construct the rectangle.
Under what conditions can this problem be solved, and how many solutions does it
have ?
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5th Eötvös Competition 1898

Organized by Mathematical and Physical Society

1. Determine all positive integers n for which 2n + 1 is divisible by 3.

2. Prove the following theorem: If two triangles have a common angle, then the sum of the
sines of the angles will be larger in that triangle where the difference of the remaining
two angles is smaller.
On the basis of this theorem, determine the shape of that triangle for which the sum
of the sines of its angles is a maximum.

3. Let A,B,C,D be four given points on a straight line e. Construct a square such that
two of its parallel sides (or their extensions) go trough A and B respectively, and the
other two sides (and their extensions) go trough C and D respectively
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6th Eötvös Competition 1899

Organized by Mathematical and Physical Society

1. The points A0, A1, A2, A,3 , A4 divide a unit circle (circle of radius 1) into five equal
parts. Prove that the chords A0A1, A0A2 satisfy

(A0A1 ·A0A2)2 = 5

2. Let x1 and x2 be the roots of the equation

x2 − (a+ d)x+ ad− bc = 0.

Show that x3
1 and x3

2 are the roots of

y3 −
(
a3 + d3 + 3abc+ 3bcd

)
y + (ad− bc)3 = 0

3. Prove that, for any natural number n, the expression

A = 2903n − 803n − 464n + 261n

is divisible by 1897.
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7th Eötvös Competition 1900

Organized by Mathematical and Physical Society

1. Let a, b, c, d be fixed integerswith d not divisible by 5. Assume thet m is an integer for
which

am3 + bm2 + cm+ d

is divisible by 5. Prove that there exists an integer n for which

dn3 + cn2 + bn+ a

is also divisible by 5.

2. Construct a triangle ABC, given the length c of its side AB, the radius r of its inscribed
circle, and the radius rc of its ex-circle tangent to the side AB and the extensions of
BC and CA.

3. A cliff is 300 meters high. Consider two free-falling raindropssuch that the second one
leaves the top of the cliff when the first one has already fallen 0.001 millimeters. What
is the distance between the drops at the moment the first hits the ground? (Compute
the answer to within 0.1 mm Neclect air resistance, ect.)
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8th Eötvös Competition 1901

Organized by Mathematical and Physical Society

1. Prove that, for any positive integer n,

1n + 2n + 3n + 4n

is divisible by 5 if and only if n is not divisible by 4.

2. If
u = cot 22◦30′ , v =

1
sin 22◦30′

prove that u satisfies a quadratic and v a quartic (4th degree) equation with integral
coefficients and with leading coefficients 1.

3. Let a and b two natural numbers whose greatest common divisor is d. Prove that
exactly d of the numbers

a, 2a, 3a, . . . , (b− 1)a, ba

is divisible by b.
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9th Eötvös Competition 1902

Organized by Mathematical and Physical Society

1. Prove that any quadratic expression

Q(x) = Ax2 +Bx+ C

(a) can be put into the form

Q(x) = k
x(x− 1)

1 · 2
+ lx+m

where k, l,m depend on the coefficients A,B,C and

(b) Q(x) takes on integral values for every integer x if and only if k, l,m are integers.

2. Let S be a given sphere with center O and radius r. Let P be any point outside the
sphere S, and let S′ be the sphere with center Pand radius PO. Denote by F the area
of the surface of the part of S′ that lies inside S. Prove that F is independent of the
particular point P chosen.

3. The area T and an angle γ of a triangle are given. Determine the lengths of the sides
a and b so that the side c, opposite the angle γ, is as short as possible.
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10th Eötvös Competition 1903

Organized by Mathematical and Physical Society

1. Let n = 2p−1 (2p − 1), and let 2p − 1 be a prime number. Prove that the sum of all
(positive) divisors of n (not including n itself) is exactly n.

2. For a given pair of values x and y satisfying x = sinα, y = sinβ, there can be four
different values of z = sin(α+ β).

(a) Set up a relation between x, y and z not involving trigonometric functions or
radicals.

(b) Find those pairs of values (x, y) for which z = sin(α+β) takes on fewer than four
distinct values.

3. Let A,B,C,D be the vertices of a rhombus; let k1 be the circle through B,C and D;
let k2 be the circle through A,C and D; let k3 be the circle through A,B and D; let
k4 be the circle through A,B and C. Prove that the tangents to k1 and k3 at B form
the same angle as the tangents to k2 and k4 at A.
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11th Eötvös Competition 1904

Organized by Mathematical and Physical Society

1. Prove that, if a pentagon (five-sided polygon) inscribed in a circle has equal angles,
then its sides are equal.

2. If a is a natural number, show that the number of positive integral solutions of the
indeterminate equation

x1 + 2x2 + 3x3 + · · ·+ nxn = a (1)

is equal to the number of non-negative integral solutions of

y1 + 2y2 + 3y3 + · · ·+ nyn = a− n(n+ 1)
2

(2)

[By a solution of equation (1), we mean a set of numbers {x1, x2, . . . , xn} which satisfies
equation (1)].

3. Let A1A2 and B1, B2 be the diagonals of a rectangle, and let O be its center. Find and
construct the set of all points P that satisfy simultaneously the four inequalides

A1P > OP , A2P > OP , B1P > OP , B2P > OP.
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12th Eötvös Competition 1905

Organized by Mathematical and Physical Society

1. For given positive integers n and p, find neaessary and suffcient conditions for the
system of equations

x+ py = n , x+ y = p2

to have a solution (x, y, z) of positive integers. Prove also that there is at most one
such solution.

2. Divide the unit square into 9 equal squares by means of two pairs of lines parallel to
the sides (see figure). Now remove the central square. Treat the remaining 8 squares
the same way, and repeat the process n times.

(a) How many squares of side length 1/3n remain?
(b) What is the sum of the areas of the removed squares as n becomes infinite?

Eötvös Competition 1905

Organized by Mathematical and Physical Society

1. For given positive integers n and p, find neaessary and suffcient conditions
for the system of equations

x + py = n , x + y = p2

to have a solution (x, y, z) of positive integers. Prove also that there is at
most one such solution.

2. Divide the unit square into 9 equal squares by means of two pairs of lines
parallel to the sides (see figure). Now remove the central square. Treat
the remaining 8 squares the same way, and repeat the process n times.

(a) How many squares of side length 1/3n remain?

(b) What is the sum of the areas of the removed squares as n becomes
infinite?

3. Let C1 be any point on side AB of a triangle ABC, and draw C1C. Let
A1 be the intersection of BC extended and the line through A parallel
to CC1; similarly let B1, be the intersection of AC extended and the line
through B parallel to CC1. Prove that

1
AA1

+
1

BB1
=

1
CC1

Latexed by Leon – Mathlinks Forum

3. Let C1 be any point on side AB of a triangle ABC, and draw C1C. Let A1 be the
intersection of BC extended and the line through A parallel to CC1; similarly let B1,
be the intersection of AC extended and the line through B parallel to CC1. Prove that

1
AA1

+
1

BB1
=

1
CC1
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13th Eötvös Competition 1906

Organized by Mathematical and Physical Society

1. Prove that, if tan(α/2) is rational (or else, if α is an odd multiple of π so that tan(α/2)
is not defined), then cosα and sinα are rational; and, conversely, if cosα and sinα are
rational, then tan(α/2) is rational unless α is an odd multiple of Π so that tan(α/2) is
not defined.

2. Let K,L,M,N designate the centers of the squaxes erected on the four sides (outside)
of a rhombus. Prove that the polygon KLMN is a square.

3. Let a1, a2, . . . , an represent an arbitrary arrangement of the numbers 1, 2, . . . , n. Prove
that, if n is odd, the product

(a1 − 1)(a2 − 2) · · · (an − n)

is an even number.
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14th Eötvös Competition 1907

Organized by Mathematical and Physical Society

1. If p and q are odd integers, prove that the equation

x2 + 2px+ 2q = 0 (1)

has no rational roots.

2. Let P be any point inside the parallelogram ABCD and let R be the radius of the
circle through A, B, and C. Show that the distance from P to the nearest vertex is
not greater than R.

3. Let
r

s
= 0.klk2k3 · · ·

be the decimal expansion of a rational number (If this is a terminating decimal, all ki

from a certain one on are 0). Prove that at least two of the numbers

σ1 = 10
r

s
− ki , σ2 = 102 − (10k1 + k2),

σ3 = 102 − (102k1 + 10k2 + k3) , . . .

are equal.
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15th Eötvös Competition 1908

Organized by Mathematical and Physical Society

1. Given two odd integers a and b; prove that a3− b3 is divisible by 2n if and only if a− b
is divisible by 2n.

2. Let n be an integer greater than 2. Prove that the nth power of the length of the
hypotenuse of a right triangle is greater than the sum of the nth powers of the lengths
of the legs.

3. A regular polygon of 10 sides (a regular decagon) may be inscribed in a circle in the
following two distinct ways: Divide the circumference into 10 equal arcs and (1) join
each division point to the next by straight line segments, (2) join each division point
to the next but two by straight line segments. (See figures). Prove that the difference
in the side lengths of these two decagons is equal to the radius of their circumscribed
circle.
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16th Eötvös Competition 1909

Organized by Mathematical and Physical Society

1. Consider any three consecutive natural numbers. Prove that the cube of the largest
cannot be the sum of the cubes of the other two.

2. Show that the radian measure of an acute angle is less than the arithmetic mean of its
sine and its tangent.

3. Let A1, B1, C1, be the feet of the altitudes of 4ABC drawn from the vertices A,
B, C respectively, and let M be the orthocenter (point of intersection of altitudes)
of 4ABC. Assume that the orthic triangle (i.e. the triangle whose vertices are the
feet of the altitudes of the original triangle) A1, B1, C1 exists. Prove that each of the
points M , A, B, and C is the center of a circle tangent to all three sides (extended if
necessary) of 4A1B1C1. What is the difference in the behavior of acute and obtuse
triangles ABC?
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17th Eötvös Competition 1910

Organized by Mathematical and Physical Society

1. If a, b, c are real numbers such that

a2 + b2 + c2 = 1

prove the inequalities

−1
2
≤ ab+ bc+ ca ≤ 1.

2. Let a, b, c, d and u be integers such that each of the numbers

ac , bc+ ad , bd

is a multiple of u. Show that bc and ad are multiples of u.

3. The lengths of sides CB and CA of 4ABC are a and b, and the angle between them
is γ = 120◦. Express the length of the bisector of γ in terms of a and b.
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18th Eötvös Competition 1911

Organized by Mathematical and Physical Society

1. Show that, if the real numbers a, b, c, A, B, C satisfy

aC − 2bB + cA = 0 and ac− bz > 0,

then
AC −B2 < 0.

2. Let Q be any point on a circle and let P1P2P3 · · ·P8 be a regular inscribed octagon.
Prove that the sum of the fourth powers of the distances from Q to the diameters P1P5,
P2P6, P3P7, P4P8 is independent of the position of Q.

3. Prove that 3n + 1 is not divisible by 2n for any integer n > 1.
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19th Eötvös Competition 1912

Organized by Mathematical and Physical Society

1. How many positive integers of n digits exist such that each digit is 1, 2, or 3? How
many of these contain all three of the digits 1, 2, and 3 at least once?

2. Prove that for every positive integer n, the number

An = 5n + 2 · 3n−1 + 1

is a multiple of 8.

3. Prove that the diagonals of a quadrilateral are perpendicular if and only if the sum of
the squares of one pair of opposite sides equals that of the other.
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20th Eötvös Competition 1913

Organized by Mathematical and Physical Society

1. Prove thatfor every integer n > 2

(1 · 2 · 3 · · ·n)2 > nn.

2. Let O and O′ designate two dìagonally opposite vertices of a cube. Bisect those edges
of the cube that contain neither of the points O and O′. Prove that these midpoints
of edges lie in a plane and form the vertices of a regular hexagon.

3. Let d denote the greatest common divisor of the natural numbers a and b, and let d′
denote the greatest common divisor of the natural numbers a′ and b′. Prove that dd′
is the greatest common divisor of the four numbers

aa′ , ab′ , ba′ , bb′.
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21st Eötvös Competition 1914

Organized by Mathematical and Physical Society

1. Let A and B be points on a circle k. Suppose that an arc k′ of another circle, `,
connects A with B and divides the area inside the circle k into two equal parts. Prove
that arc k′ is longer than the diameter of k.

2. Suppose that
−1 ≤ ax2 + bx+ c ≤ 1for − 1 ≤ x ≤ 1,

where a, b, c are real numbers. Prove that

−4 ≤ 2ax+ b ≤ 4 ≤ 1for − 1 ≤ x ≤ 1.

3. The circle k intersects the sides BC, CA, AB of triangle ABC in points A1, A2; B1, B2;
C1, C2. The perpendiculars to BC, CA, AB through A1, B1, C1, respectively, meet at
a point M . Prove that the three perpendiculars to BC, CA, AB through A2, B2, and
C2, respectively, also meet in one point.
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22nd Eötvös Competition 1915

Organized by Mathematical and Physical Society

1. Let A, B, C be any three real numbers. Prove that there exists a number ν such that

An2 +Bn+ < n!

for every natural number n > ν.

2. Triangle ABC lies entirely inside a polygon. Prove that the perimeter of triangle ABC
is not greater than that of the polygon.

3. Prove that a triangle inscribed in a parallelogram has at most half the area of the
parallelogram.
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23rd Eötvös Competition 1916

Organized by Mathematical and Physical Society

1. If a and b are positive numbers, prove that the equation

1
x

+
1

x− z
+

1
x− b

= 0

has two rea] roots, one between a/3 and 2a/3, and one between −2b/3 and −b/3.

2. Let the bisector of the angle at C of triangle ABC intersect side AB in point D. Show
that the segment CD is shorter than the geometric mean of the sides CA and CB.
(The geometric mean of two positive numbers is the square root of their product; the
geometric mean of n numbers is the nth root of their product.

3. Divide the numbers
1, 2, 3, 4, 5

into two arbitrarily chosen sets. Prove that one of the sets contains two numbers and
their difference.
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24th Eötvös Competition 1917

Organized by Mathematical and Physical Society

1. If a and b are integers and if the solutions of the system of equations{
y − 2x− a = 0

y2 − xy + x2 − b = 0

are rational, prove that the solutions are integers.

2. In the square of an integer a, the tens’ digit is 7. What is the units’ digit of a2?

3. Let A and B be two points inside a given circle k. Prove that there exist (infinitely
many) circles through A and B which lie entirely in k.
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25th Eötvös Competition 1918

Organized by Mathematical and Physical Society

1. Let AC be the longer of the two diagonals of the parallelogram ABCD. Drop perpendi-
culars from C to AB and AD extended. If E and F are the feet of these perpendiculars,
prove that

AB ·AE +AD ·AF = (AC)2.

2. Find three distinct natural numbers such that the sum of their reciprocals is an integer.

3. If a, b, c; p, q, r are real numbers such that, for every real number x,

ax2 − 2bx+ c ≥ 0 and px2 + 2qx+ r ≥ 0,

prove that then
apx2 + bqx+ cr ≥ 0

for all real x.

Remark. No contests were held in the years 1919-1921.
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26th Eötvös Competition 1922

Organized by Mathematical and Physical Society

1. Given four points A,B,C,D in space, find a plane, S, equidistant from all four points
and having A and C on one side, B and D on the other.

2. Prove that
x4 + 2x2 + 2x+ 2

is not the product of two polynomials

x2 + ax+ b and x2 + cx+ d

in which a, b, c, d are integers.

3. Show that, if a, b, . . . , n are distinct natural numbers, none divisible by any primes
greater than 3, then

1
a

+
1
b

+ · · · 1
n
< 3
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27th Eötvös Competition 1923

Organized by Mathematical and Physical Society

1. Three circles through the point o and of radius r intersect pairwise in the additional
points A,B,C. Prove that the circle through the points A, B, and C also has radius
r.

2. If
sn = 1 + q + q2 + · · ·+ qn

and

Sn = 1 +
1 + q

2
+
(

1 + q

2

)2

+ · · ·+
(

1 + q

2

)n

,

prove that (
n+ 1

1

)
+
(
n+ 1

2

)
s1 +

(
n+ 1

3

)
s2 + · · ·+

(
n+ 1
n+ 1

)
sn = 2nSn

3. Prove that, if the terms of an infinite arithmetic progression of natural numbers are
not all equal, they cannot all be primes.
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28th Eötvös Competition 1924

Organized by Mathematical and Physical Society

1. Let a, b, c be fìxed natural numbers. Suppose that, for every positive integer n, there
is a triangle whose sides have lengths an, bn, and cn respectively. Prove that these
triangles are isosceles.

2. If O is a given point, ` a given line, and a a given positive number, find the locus of
points P for which the sum of the distances from P to O and from P to ` is a.

3. Let A, B, and C be three given points in the plane; construct three cirdes, k1, k2, and
k3, such that k2 and k3 have a common tangent at A, k3 and k1 at B, and k1 and k2

at C.
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29th Eötvös Competition 1925

Organized by Mathematical and Physical Society

1. Let a, b, c, d be four integers. Prove that the product of the six differences

b− a, c− a, d− a, d− c, d− b, c− b

is divisible by 12.

2. How maay zeros are there at the end of the number

1000! = 1 · 2 · 3 · · · 999 · 1000?

3. Let r be the radius of the inscribed circle of a right triangle ABC. Show that r is less
than half of either leg and less than one fourth of the hypotenuse.
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30th Eötvös Competition 1926

Organized by Mathematical and Physical Society

1. Prove that, if a and b are given integers, the system of equatìons{
x+ y + 2z + 2t = a

2x− 2y + z − t = b

has a solution in integers x, y, z, t.

2. Prove that the product of four consecutive natural numbers cannot be the square of
an integer.

3. The circle k rolls along the inside of circle k; the radius of k is twice the radius of k′.
Describe the path of a point on k.
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31st Eötvös Competition 1927

Organized by Mathematical and Physical Society

1. Let the integers a, b, c, d be relatively prime to

m = ad− bc.

Prove that the pairs of integers (x, y) for which ax+ by is a multiple of m are identical
with those for which cx+ dy is a multiple of m.

2. Find the sum of all distinct four-digit numbers that contain only the digits 1, 2, 3, 4,
5, each at most once.

3. Consider the four circles tangent to all three lines containing the sides of a triangle
ABC; let k and kc be those tangent to side AB between A and B. Prove that the
geometric mean of the radii of k and kc, does not exceed half the length of AB.
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32nd Eötvös Competition 1928

Organized by Mathematical and Physical Society

1. Prove that, among the positive numbers

a, 2a, . . . , (n− 1)a,

there is one that differs from an integer by at most 1/n.

2. Put the numbers 1, 2, 3, . . . , n on the circumference of a circle in such a way that the
difference between neighboring numbers is at most 2. Prove that there is just one
solution (if regard is paid only to the order in which the numbers are arranged).

3. Let ` be a given line, A and B given points of the plane. Choose a point P on ` so
that the longer of the segments AP , BP is as short as possible. (If AP = BP , either
segment may be taken as the longer one.)
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33rd Eötvös Competition 1929

Organized by Mathematical and Physical Society

1. In how many ways can the sum of 100 fillér be made up with coins of denominations
l, 2, 10, 20 and 50 fillér?

2. Let k ≤ n be positive integers and x be a real number with 0 ≤ x < 1/n. Prove that(
n

0

)
−
(
n

1

)
x+

(
n

2

)
x2 − · · ·+ (−1)k

(
n

k

)
xk > 0

3. Let p, q and r be three concurrent lines in the plane such that the angle between any
two of them is 60◦. Let a, b and c be real numbers such that 0 < a ≤ b ≤ c.

(a) Prove that the set of points whose distances from p, q and r are respectively less
than a, b and c consists of the interior of a hexagon if and only if a+ b > c.

(b) Determine the length of the perimeter of this hexagon when a+ b > c.
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34th Eötvös Competition 1930

Organized by Mathematical and Physical Society

1. How many five-digit multiples of 3 end with the digit 6 ?

2. A straight line is drawn across an 8 × 8 chessboard. It is said to pierce a square if it
passes through an interior point of the square. At most how many of the 64 squares
can this line pierce?

3. Inside an acute triangle ABC is a point P that is not the circumcenter. Prove that
among the segments AP , BP and CP , at least one is longer and at least one is shorter
than the circumradius of ABC.
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35th Eötvös Competition 1931

Organized by Mathematical and Physical Society

1. Let p be a prime greater than 2. Prove that 2
p can be expressed in exactly one way in

the form
1
x

+
1
y

where x and y are positive integers with x > y.

2. Let a2
1 + a2

2 + a2
3 + a2

4 + a2
5 = b2, where al, a2, a3, a4, a5, and b are integers. Prove that

not all of these numbers can be odd.

3. Let A and B be two given points, distance 1 apart. Determine a point P on the line
AB such that

1
1 +AP

+
1

1 +BP

is a maximum.
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36th Eötvös Competition 1932

Organized by Mathematical and Physical Society

1. Let a, b and n be positive integers such that b is divisible by an. Prove that (a+1)b−1
is divisible by an+1.

2. In triangle ABC, AB 6= AC. Let AF , AP and AT be the median, angle bisector and
altitude from vertex A, with F , P and T on BG or its extension.

(a) Prove that P always lies between F and T .

(b) Prove that ∠FAP < ∠PAT if ABC is an acute triangle.

3. Let α, β and γ be the interior angles of an acute triangle. Prove that if α < β < γ,
then sin 2α > sin 2β > sin 2γ.
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37th Eötvös Competition 1933

Organized by Mathematical and Physical Society

1. Let a, b, c and d be rea] numbers such that a2 + b2 = c2 + d2 = 1 and ac + bd = 0.
Determine the value of ab+ cd.

2. Sixteen squares of an 8× 8 chessboard are chosen so that there are exactly lwo in each
row and two in each column. Prove that eight white pawns and eight black pawns can
be placed on these sixteen squares so that there is one white pawn and one black pawn
in each row and in cach colunm.

3. The circles k1 and k2 are tangent at the point P . A line is drawn through P , cutting
k1 at A1 and k2 at A2. A second line is drawn through P , cutting k1 at Bl and k2 at
B2. Prove that the triangles PA1B1 and PA2B2 are similar.
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38th Eötvös Competition 1934

Organized by Mathematical and Physical Society

1. Let n be a given positive integer and

A =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · 2n

Prove that at least one term of the sequence A, 2A, 4A, 8A, . . . , 2kA, . . . is an integer.

2. Which polygon inscribed in a given circle has the property that the sum of the squares
of the lengths of its sides is maximum?

3. We are given an infinite set of rectangles in the plane, each with vertices of the form
(0, 0), (0,m), (n, 0) and (n,m), where m and n are positive integers. Prove that there
exist two rectangles in the set such that one contains the other.
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39th Eötvös Competition 1935

Organized by Mathematical and Physical Society

1. Let n be a positive integer. Prove that

a1

b1
+
a2

b2
+ · · · an

bn
≥ n,

where (bl, b2, . . . , bn) is any permutation of the positive real numbers a1, a2, . . . , an.

2. Prove that a finite point set cannot have more than one center of symmetry.

3. A real number is assigned to each vertex of a triangular prism so that the number on
any vertex is the arithmetic mean of the numbers on the three adjacent vertices. Prove
that all six numbers are equal.
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40th Eötvös Competition 1936

Organized by Mathematical and Physical Society

1. Prove that for all positive integers n,

1
1 · 2

+
1

3 · 4
+ · · · 1

(2n− 1)2n
=

1
n+ 1

1
n+ 2

+ · · ·+ 1
2n

2. S is a point inside triangle ABC such that the areas of the triangles ABS, BCS and
CAS are all equal. Prove that S is the centroid of ABC.

3. Let a be any positive integer. Prove that there exists a unique pair of positive integers
x and y such that

x+
1
2

(x+ y − 1)(x+ y − 2) = a.
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41st Eötvös Competition 1937

Organized by Mathematical and Physical Society

1. Let n be a positive integer. Prove that a1!a2! · · · an! < k!, where k is an integer which
is greater than the sum of the positive integers a1, a2, . . . , an.

2. Two circles in space are said to be tangent to each other if they have a corni-non
tangent at the same point of tangency. Assume that there are three circles in space
which are mutually tangent at three distinct points. Prove that they either alI lie in a
plane or all lie on a sphere.

3. Let n be a positive integer. Let P,Q,A1, A2, . . . , An be distinct points such that
A1, A2, . . . , An are not collinear. Suppose that PA1 + PA2 + · · ·+ +PAn, and QA1 +
QA2 + · · · + QAn, have a common value s for some reat number s. Prove that there
exists a point R such that

RA1 +RA2 + · · ·+RAn < s.
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42nd Eötvös Competition 1938

Organized by Mathematical and Physical Society

1. Prove that an integer n can be expressed as the sum of two squares if and only if 2n
can be expressed as the sum of two squares.

2. Prove that for all integers n > 1,

1
n

+
1

n+ 1
+ · · · 1

n2 − 1
+

1
n2

> 1

3. Prove that for any acute triangle, there is a point in space such that every line segment
from a vertex of the triangle to a point on the line joining the other two vertices
subtends a right angle at this point.
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43rd Eötvös Competition 1939

Organized by Mathematical and Physical Society

1. Let a1, a2, b1, b2, c1 and c2 be real numbers for which a1a2 > 0, a1c1 ≥ b21 and a2c2 > b22.
Prove that

(a1 + a2)(c1 + c2) ≥ (b1 + b2)2

2. Determine the highest power of 2 that divides 2n!.

3. ABC is an acute triangle. Three semicircles are constructed outwardly on the sides
BC, CA and AB respectively. Construct points A′, B′ and C ′ on these semicìrcles
respectively so that AB′ = AC ′, BC ′ = BA′ and CA′ = CB′.
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44th Eötvös Competition 1940

Organized by Mathematical and Physical Society

1. In a set of objects, each has one of two colors and one of two shapes. There is at least
one object of each color and at least one object of each shape. Prove that there exist
two objects in the set that are different both in color and in shape.

2. Let m and n be distinct positive integers. Prove that 22m

+ 1 and 22n

+ 1 have no
common divisor greater than 1.

3. (a) Prove that for any triangle H1, there exists a triangle H2 whose side lengths are
equal to the lengths of the medians of H1. (b) If H3 is the triangle whose side lengths
are equal to the lengths of the medians of H2, prove that H1 and H3 are similar.
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45th Eötvös Competition 1941

Organized by Mathematical and Physical Society

1. Prove that

(1 + x)(1 + x2)(1 + x4)(1 + x8) · · · (1 + x2k−1
) = 1 + x+ x2 + x3 + · · ·+ x2k−1.

2. Prove that if all four vertices of a parallelogram are lattice points and there are some
other lattice points in or on the parallelogram, then its area exceeds 1.

3. The hexagon ABCDEF is inscribed in a circle. The sides AB, CD and EF are
all equal in length to the radius. Prove that the midpoints of the other three sides
determine an equilateral triangle.
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46th Eötvös Competition 1942

Organized by Mathematical and Physical Society

1. Prove that in any triangle, at most one side can be shorter than the altitude from the
opposite vertex.

2. Let a, b, c and d be integers such that for all integers m and n, there exist integers x
and y such that ax+ by = m, and cx+ dy = n. Prove that ad− bc = ±1.

3. Let A′, B′ and C ′ be points on the sides BC, CA and AB, respectively, of an equilateral
triangle ABC. If AC ′ = 2C ′B, BA′ = 2A′C and CB′ = 2B′A, prove that the lines
AA′, BB′ and CC ′ enclose a triangle whose area is 1/7 that of ABC.
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47th Eötvös Competition 1943

Organized by Mathematical and Physical Society

1. Prove that in any group of people, the number of those who know an odd number of
the others in the group is even. Assume that knowing is a symmetric relation.

2. Let P be any point inside an acute triangle. Let D and d be respectively the maximum
and minimum distances from P to any point on the perimeter of the triangle.

(a) Prove that D ≥ 2d.

(b) Determine when equality holds.

3. Let a < b < c < d be real numbers and (x, y, z, t) be any permutation of a, b, c and d.
What are the maximum and minimum values of the expression

(x− y)2 + (y − z)2 + (z − t)2 + (t− x)2?

Remark. No contests were held in the years 1944-1945-1946.
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2. Kürschák Competitions

József Kürschák’s mother was Jozefa Teller and his fa-
ther was András Kürschák, a manual worker who died
when József was six years old. After the death of his fa-
ther, József was brought up in Budapest by his mother.
It is correct to say that József, although born in Buda,
was brought up in Budapest after the death of his father
since Budapest was created by the unification of Buda,
Obuda and Pest in 1872. Kürschák attended secondary
school in the flourishing city that became not only the
capital of Hungary but also a major centre for industry,
trade, communications, and architecture. Most impor-
tantly for the young boy, he was growing up in a city
which was a centre for education, and for intellectual
and artistic life.

Kürschák entered the Technical University of Budapest in 1881 and graduated in 1886
with qualifications to teach mathematics and physics in secondary schools. He then taught
at a school in Roznyo, Slovakia, for two years before returning to the Technical University
of Budapest to undertake research. He received his doctorate in 1890 and then taught in
Budapest, at the Technical University, for the whole of his career. He was appointed in 1891
and successively promoted, achieving the rank of professor in 1900.

In [4] the authors describe a paper by Kürschák written in 1898 in which a regular
dodecagon inscribed in a unit circle is investigated. A trigonometric argument can be used
to show that its area of the dodecagon is 3 but Kürschák gives a purely geometric proof. He
proves that the dodecagon can be dissected into a set of triangles which can be rearranged so
as to fill three squares with sides having length 1. Kürschák’s tile, which occurs in the title
of [4], is constructed as follows. Start with a square and construct an equilateral triangle
drawn inwards on each side. A regular dodecagon has the following 12 points as vertices:
the 8 intersections of the corresponding sides of adjacent equilateral triangles and the 4 mid-
points of the sides of the new square formed by the vertices of the four triangles. In fact the
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first paper which Kürschák wrote was concerned with polygons. This was Über dem Kreise
ein-und umgeschriebene Vielecke (1887) which investigated extremal properties of polygons
inscribed in, and circumscribed about, a circle.

Another topic which Kürschák investigated was the differential equations of the calcu-
lus of variations. Papers such as Über partielle Differentialgleichungen zweiter Ordnung
mit gleichen Charakteristiken (1890), Über die partielle Differentialgleichung des Problems
(1894), Über die Transformation der partiellen Differentialgleichungen der Variationsrech-
nung (1902), and Über eine charakteristische Eigenschaft der Differentialgleichungen der
Variationsrechnung (1905) are examples of his work in this area. He proved invariance of the
differential equations he was considering under contact transformations. Another problem
he solved [3] in this area was to find, in his 1905 paper, necessary and sufficient conditions for:

. . . a second-order differential expressions to provide the equation belonging to the varia-
tion of a multiple integral.

Led to consider linear algebra in the context of the above work, he wrote a number of
papers on matrices and determinants such as Über symmetrische Matrices (1904) and Ein
irreduzibilitätssatz in der Theorie der symmetrischen matrizen (1921).

Kürschák’s most important work, however, was in 1912 when he founded the theory of
valuations. His idea was to define |x|p for a rational number x as follows. Express x in lowest
terms as pn a

b and then define
|x|p = p−n
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For example ∣∣∣∣20
11

∣∣∣∣
2

=
1
4

,

∣∣∣∣20
11

∣∣∣∣
3

= 1 ,

∣∣∣∣20
11

∣∣∣∣
5

=
1
5

,

∣∣∣∣20
11

∣∣∣∣
11

= 11

The rationals are not complete with this metric and their completion is the field of p-adic
numbers. Kürschák’s work was inspired by earlier work of Julius König, Steinitz and Hensel.
The importance of Kürschák’s valuations is that they allow notions of convergence and limits
be used in the theory of abstract fields and greatly enrich the topic.

Dénes Kónig and Von Neumann were both students of Kürschák and many other famous
mathematicians benefited from his teaching. Dénes Kónig received his doctorate in 1907 for
a thesis written under Kürschák’s supervision. Peter writes in [5] that:

. . . outstanding mathematicians such as Hunyadi, Julius König, Kürschák and Rados ha-
ve contributed to the high standard of mathematical education at the Technical University [of
Budapest]. Their scientific and teaching activity affected mathematical life in the whole coun-
try and laid the foundation of the internationally recognized mathematical school in Hungary.

Indeed Kürschák achieved this through his excellent teaching as well as bringing the very
best out of his students. He was one of the main organisers of mathematical competitions
and to honour his outstanding contributions in this area the Loránd Eötvös Mathematics
Competition, started in 1925, was renamed the József Kürschák Mathematics Competition
in 1949.

Kürschák was elected to the Hungarian Academy of Sciences in 1897.
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48th Eötvös-Kürschák Competition 1947

Organized by János Bolyai Mathematical Society

1. Prove that 462n+1 + 296 · 132n+1 is divisible by 1947.

2. Show that any graph with 6 points has a triangle or three points which are not joined
to each other.

3. What is the smallest number of disks radius 1
2 that can cover a disk radius 1?
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49th Eötvös-Kürschák Competition 1948

Organized by János Bolyai Mathematical Society

1. Knowing that 23 October 1948 was a Saturday, which is more frequent for New Year’s
Day, Sunday or Monday?

2. A convex polyhedron has no diagonals (every pair of vertices are connected by an edge).
Prove that it is a tetrahedron.

3. Prove that among any n positive integers one can always find some (at least one) whose
sum is divisible by n.
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50th Eötvös-Kürschák Competition 1949

Organized by János Bolyai Mathematical Society

1. Prove that sinx+ 1
2 sin 2x+ 1

3 sin 3x > 0 for 0 < x < 180◦.

2. P is a point on the base of an isosceles triangle. Lines parallel to the sides through P
meet the sides at Q and R. Show that the reflection of P in the line QR lies on the
circumcircle of the triangle.

3. Which positive integers cannot be represented as a sum of (two or more) consecutive
integers?
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51st Eötvös-Kürschák Competition 1950

Organized by János Bolyai Mathematical Society

1. Several people visited a library yesterday. Each one visited the library just once (in
the course of yesterday). Amongst any three of them, there were two who met in the
library. Prove that there were two moments T and T ′ yesterday such that everyone
who visited the library yesterday was in the library at T or T ′ (or both).

2. Three circles C1, C2, C3 in the plane touch each other (in three different points).
Connect the common point of C1 and C2 with the other two common points by straight
lines. Show that these lines meet C3 in diametrically opposite points.

3. (x1, y1, z1) and (x2, y2, z2) are triples of real numbers such that for every pair of integers
(m,n) at least one of x1m + y1n + z1, x2m + y2n + z2 is an even integer. Prove that
one of the triples consists of three integers.



Ercole Suppa

Eötvös-Kürschák
Competitions

Indice

JJ II

J I

Full Screen

Pag. 62 di 114

52nd Eötvös-Kürschák Competition 1951

Organized by János Bolyai Mathematical Society

1. ABCD is a square. E is a point on the side BC such that BE = 1
3BC, and F is a

point on the ray DC such that CF = 1
2DC. Prove that the lines AE and BF intersect

on the circumcircle of the square.

b

A
b

B

b

C

b

D

b

A

b

E

b

F

b

b

2. For which m > 1 is (m− 1)! divisible by m?

3. An open half-plane is the set of all points lying to one side of a line, but excluding the
points on the line itself. If four open half-planes cover the plane, show that one can
select three of them which still cover the plane.
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53rd Eötvös-Kürschák Competition 1952

Organized by János Bolyai Mathematical Society

1. A circle C touches three pairwise disjoint circles whose centers are collinear and none of
which contains any of the others. Show that its radius must be larger than the radius
of the middle of the three circles.

2. Show that if we choose any n+ 2 distinct numbers from the set {1, 2, 3, . . . , 3n} there
will be two whose difference is greater than n and smaller than 2n.

3. ABC is a triangle. The point A′ lies on the side opposite to A and BA′/BC = k,
where 1

2 < k < 1. Similarly, B′ lies on the side opposite to B with CB′/CA = k,
and C ′ lies on the side opposite to C with AC ′/AB = k. Show that the perimeter of
A′B′C ′ is less than k times the perimeter of ABC.



Ercole Suppa

Eötvös-Kürschák
Competitions

Indice

JJ II

J I

Full Screen

Pag. 64 di 114

54th Eötvös-Kürschák Competition 1953

Organized by János Bolyai Mathematical Society

1. A and B are any two subsets of {1, 2, . . . , n − 1} such that |A| + |B| > n − 1. Prove
that one can find a in A and b in B such that a+ b = n.

2. n and d are positive integers such that d divides 2n2. Prove that n2 + d cannot be a
square.

3. ABCDEF is a convex hexagon with all its sides equal. Also ∠A + ∠C + ∠E =
∠B + ∠D + ∠F . Show that ∠A = ∠D, ∠B = ∠E and ∠C = ∠F .
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55th Eötvös-Kürschák Competition 1954

Organized by János Bolyai Mathematical Society

1. ABCD is a convex quadrilateral with AB +BD = AC + CD. Prove that AB < AC.

2. Every planar section of a three-dimensional body B is a disk. Show that B must be a
ball.

3. A tournament is arranged amongst a finite number of people. Every person plays every
other person just once and each game results in a win to one of the players (there are
no draws). Show that there must a person X such that, given any other person Y in
the tournament, either X beat Y , or X beat Z and Z beat Y for some Z.
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56th Eötvös-Kürschák Competition 1955

Organized by János Bolyai Mathematical Society

1. Prove that if the two angles on the base of a trapezoid are different, then the diagonal
starting from the smaller angle is longer than the other diagonal.

�

A

�

B

�

C

�

D
�

A

2. How many five digit numbers are divisible by 3 and contain the digit 6?

3. The vertices of a triangle are lattice points (they have integer coordinates). There are
no other lattice points on the boundary of the triangle, but there is exactly one lattice
point inside the triangle. Show that it must be the centroid.
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57th Eötvös-Kürschák Competition 1957

Organized by János Bolyai Mathematical Society

1. ABC is an acute-angled triangle. D is a variable point in space such that all faces of
the tetrahedron ABCD are acute-angled. P is the foot of the perpendicular from D
to the plane ABC. Find the locus of P as D varies.

2. A factory produces several types of mug, each with two colors, chosen from a set of
six. Every color occurs in at least three different types of mug. Show that we can find
three mugs which together contain all six colors.

3. What is the largest possible value of

|a1 − 1|+ |a2 − 2|+ · · ·+ |an − n|

where a1, a2, . . . , an is a permutation of 1, 2, . . . , n?
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58th Eötvös-Kürschák Competition 1958

Organized by János Bolyai Mathematical Society

1. Given any six points in the plane, no three collinear, show that we can always find
three which form an obtuse-angled triangle with one angle at least 120◦.

2. Show that if m and n are integers such that m2 +mn+ n2 is divisible by 9, then they
must both be divisible by 3.

3. The hexagon ABCDEF is convex and opposite sides are parallel. Show that the
triangles ACE and BDF have equal area.
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59th Eötvös-Kürschák Competition 1959

Organized by János Bolyai Mathematical Society

1. a, b, c are three distinct integers and n is a positive integer. Show that

an

(a− b)(a− c)
+

bn

(b− a)(b− c)
+

cn

(c− a)(c− b)

is an integer.

2. The angles subtended by a tower at distances 100, 200 and 300 from its foot sum to
90◦. What is its height?

3. Three brothers and their wives visited a friend in hospital. Each person made just one
visit, so that there were six visits in all. Some of the visits overlapped, so that each
of the three brothers met the two other brothers’ wives during a visit. Show that one
brother must have met his own wife during a visit.
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60th Eötvös-Kürschák Competition 1960

Organized by János Bolyai Mathematical Society

1. Among any four people at a party there is one who has met the three others before the
party. Show that among any four people at the party there must be one who has met
everyone at the party before the party.

2. Let a1 = 1, a2, a3, . . . be a sequence of positive integers such that

ak < 1 + a1 + a2 + · · ·+ ak−1

for all k > 1. Prove that every positive integer can be expressed as a sum of ais.

3. E is the midpoint of the side AB of the square ABCD, and F , G are any points on the
sides BC, CD such that EF is parallel to AG. Show that FG touches the inscribed
circle of the square.
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61st Eötvös-Kürschák Competition 1961

Organized by János Bolyai Mathematical Society

1. Given any four distinct points in the plane, show that the ratio of the largest to the
smallest distance between two of them is at least

√
2.

2. x, y, z are positive reals less than 1. Show that at least one of (1− x)y, (1− y)z and
(1− z)x does not exceed 1

4 .

3. Two circles centers O and O′ are disjoint. PP ′ is an outer tangent (with P on the circle
center O, and P ′ on the circle center O′). Similarly, QQ′ is an inner tangent (with Q
on the circle center O, and Q′ on the circle center O′). Show that the lines PQ and
P ′Q′ meet on the line OO′.

�

O

�

O′

�

P

�

P ′

�
Q

�

Q′

�
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62nd Eötvös-Kürschák Competition 1962

Organized by János Bolyai Mathematical Society

1. Show that the number of ordered pairs (a, b) of positive integers with lowest common
multiple n is the same as the number of positive divisors of n2.

2. Show that given any n+ 1 diagonals of a convex n-gon, one can always find two which
have no common point.

3. P is any point of the tetrahedron ABCD except D. Show that at least one of the three
distances DA, DB, DC exceeds at least one of the distances PA, PB and PC.
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63rd Eötvös-Kürschák Competition 1963

Organized by János Bolyai Mathematical Society

1. mn students all have different heights. They are arranged in m > 1 rows of n > 1. In
each row select the shortest student and let A be the height of the tallest such. In each
column select the tallest student and let B be the height of the shortest such. Which
of the following are possible: A < B, A = B, A > B? If a relation is possible, can it
always be realized by a suitable arrangement of the students?

2. A is an acute angle. Show that

(1 +
1

senA
)(1 +

1
cosA

) > 5

3. A triangle has no angle greater than 90◦. Show that the sum of the medians is greater
than four times the circumradius.
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64th Eötvös-Kürschák Competition 1964

Organized by János Bolyai Mathematical Society

1. ABC is an equilateral triangle. D andD′ are points on opposite sides of the plane ABC
such that the two tetrahedra ABCD and ABCD′ are congruent (but not necessarily
with the vertices in that order). If the polyhedron with the five vertices A, B, C, D,
D′ is such that the angle between any two adjacent faces is the same, find DD′

AB .

2. At a party every girl danced with at least one boy, but not with all of them. Similarly,
every boy danced with at least one girl, but not with all of them. Show that there were
two girls G and G′ and two boys B and B′, such that each of B and G danced, B′ and
G′ danced, but B and G′ did not dance, and B′ and G did not dance.

3. Show that for any positive reals w, x, y, z we have√
w2 + x2 + y2 + z2

4
≥ 3

√
wxy + wxz + wyz + xyz

4



Ercole Suppa

Eötvös-Kürschák
Competitions

Indice

JJ II

J I

Full Screen

Pag. 75 di 114

65th Eötvös-Kürschák Competition 1965

Organized by János Bolyai Mathematical Society

1. What integers a, b, c satisfy a2 + b2 + c2 + 3 < ab+ 3b+ 2c ?

2. D is a closed disk radius R. Show that among any 8 points of D one can always find
two whose distance apart is less than R.

3. A pyramid has square base and equal sides. It is cut into two parts by a plane parallel
to the base. The lower part (which has square top and square base) is such that the
circumcircle of the base is smaller than the circumcircles of the lateral faces. Show
that the shortest path on the surface joining the two endpoints of a spatial diagonal
lies entirely on the lateral faces.

� �

��

� �

��

�
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66th Eötvös-Kürschák Competition 1966

Organized by János Bolyai Mathematical Society

1. Can we arrange 5 points in space to form a pentagon with equal sides such that the
angle between each pair of adjacent edges is 90◦?

2. Show that the n digits after the decimal point in
(
5 +
√

26
)n

are all equal.

3. Do there exist two infinite sets of non-negative integers such that every non-negative
integer can be uniquely represented in the form a+ b with a in A and b in B?
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67th Eötvös-Kürschák Competition 1967

Organized by János Bolyai Mathematical Society

1. A is a set of integers which is closed under addition and contains both positive and
negative numbers. Show that the difference of any two elements of A also belongs to
A.

2. A convex n-gon is divided into triangles by diagonals which do not intersect except at
vertices of the n-gon. Each vertex belongs to an odd number of triangles. Show that
n must be a multiple of 3.

3. For a vertex X of a quadrilateral, let h(X) be the sum of the distances from X to
the two sides not containing X. Show that if a convex quadrilateral ABCD satisfies
h(A) = h(B) = h(C) = h(D), then it must be a parallelogram.
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68th Eötvös-Kürschák Competition 1968

Organized by János Bolyai Mathematical Society

1. In an infinite sequence of positive integers every element (starting with the second) is
the harmonic mean of its neighbors. Show that all the numbers must be equal.

2. There are 4n segments of unit length inside a circle radius n. Show that given any line
L there is a chord of the circle parallel or perpendicular to L which intersects at least
two of the 4n segments.

3. For each arrangement X of n white and n black balls in a row, let f(X) be the number
of times the color changes as one moves from one end of the row to the other. For each
k such that 0 < k < n, show that the number of arrangements X with f(X) = n − k
is the same as the number with f(X) = n+ k.
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69th Eötvös-Kürschák Competition 1969

Organized by János Bolyai Mathematical Society

1. Show that if 2 + 2
√

28n2 + 1 is an integer, then it is a square (for n an integer).

2. A triangle has side lengths a, b, c and angles A, B, C as usual (with b opposite B etc).
Show that if

a(1− 2 cosA) + b(1− 2 cosB) + c(1− 2 cosC) = 0

then the triangle is equilateral.

3. We are given 64 cubes, each with five white faces and one black face. One cube is
placed on each square of a chessboard, with its edges parallel to the sides of the board.
We are allowed to rotate a complete row of cubes about the axis of symmetry running
through the cubes or to rotate a complete column of cubes about the axis of symmetry
running through the cubes. Show that by a sequence of such rotations we can always
arrange that each cube has its black face uppermost.
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70th Eötvös-Kürschák Competition 1970

Organized by János Bolyai Mathematical Society

1. What is the largest possible number of acute angles in an n-gon which is not self-
intersecting (no two non-adjacent edges interesect)?

2. A valid lottery ticket is formed by choosing 5 distinct numbers from 1, 2, 3, . . . , 90.
What is the probability that the winning ticket contains at least two consecutive
numbers?

3. n points are taken in the plane, no three collinear. Some of the line segments between
the points are painted red and some are painted blue, so that between any two points
there is a unique path along colored edges. Show that the uncolored edges can be
painted (each edge either red or blue) so that all triangles have an odd number of red
sides.
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71st Eötvös-Kürschák Competition 1971

Organized by János Bolyai Mathematical Society

1. A straight line cuts the side AB of the triangle ABC at C1, the side AC at B1 and
the line BC at A1. C2 is the reflection of C1 in the midpoint of AB, and B2 is the
reflection of B1 in the midpoint of AC. The lines B2C2 and BC intersect at A2.

�

A

�

B

�

C

�
C1

�

A1

�
B1

�

�
C2

�

�B2

�

A2

Prove that
senB1A1C

senC2A2B
=
B2C2

B1C1

2. Given any 22 points in the plane, no three collinear. Show that the points can be
divided into 11 pairs, so that the 11 line segments defined by the pairs have at least
five different intersections.

3. There are 30 boxes each with a unique key. The keys are randomly arranged in the
boxes, so that each box contains just one key and the boxes are locked. Two boxes
are broken open, thus releasing two keys. What is the probability that the remaining
boxes can be opened without forcing them?
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72nd Eötvös-Kürschák Competition 1972

Organized by János Bolyai Mathematical Society

1. A triangle has side lengths a, b, c. Prove that

a(b− c)2 + b(c− a)2 + c(a− b)2 + 4abc > a3 + b3 + c3

2. A class has n > 1 boys and n girls. For each arrangement X of the class in a line let
f(X) be the number of ways of dividing the line into two non-empty segments, so that
in each segment the number of boys and girls is equal. Let the number of arrangements
with f(X) = 0 be A, and the number of arrangements with f(X) = 1 be B. Show
that B = 2A.

3. ABCD is a square side 10. There are four points P1, P2, P3, P4 inside the square.
Show that we can always construct line segments parallel to the sides of the square of
total length 25 or less, so that each Pi is linked by the segments to both of the sides
AB and CD. Show that for some points Pi it is not possible with a total length less
than 25.
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73rd Eötvös-Kürschák Competition 1973

Organized by János Bolyai Mathematical Society

1. For what positive integers n, k (with k < n) are the binomial coefficients(
n

k − 1

)
,

(
n

k

)
,

(
n

k + 1

)
three successive terms of an arithmetic progression?

2. For any positive real r, let d(r) be the distance of the nearest lattice point from the
circle center the origin and radius r. Show that d(r) tends to zero as r tends to infinity.

3. n > 4 planes are in general position (so every 3 planes have just one common point, and
no point belongs to more than 3 planes). Show that there are at least 2n−3

4 tetrahedra
among the regions formed by the planes.
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74th Eötvös-Kürschák Competition 1974

Organized by János Bolyai Mathematical Society

1. A library has one exit and one entrance and a blackboard at each. Only one person en-
ters or leaves at a time. As he does so he records the number of people found/remaining
in the library on the blackboard. Prove that at the end of the day exactly the same
numbers will be found on the two blackboards (possibly in a different order).

2. Sn is a square side 1
n . Find the smallest k such that the squares S1, S2, S3, · · · can be

put into a square side k without overlapping.

3. Let

pk(x) = 1− x+
x2

2!
− x3

3!
+ · · ·+ (−x)2k

(2k)!

Show that it is non-negative for all real x and all positive integers k.
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75th Eötvös-Kürschák Competition 1975

Organized by János Bolyai Mathematical Society

1. Transform the equation

ab2
(

1
(a+ c)2

+
1

(a− c)2

)
= (a− b)

into a simpler form, given that a > c ≥ 0, b > 0.

2. Prove or disprove: given any quadrilateral inscribed in a convex polygon, we can find
a rhombus inscribed in the polygon with side not less than the shortest side of the
quadrilateral.

3. Let
x0 = 5 , xn+1 = xn +

1
xn

Prove that 45 < x1000 < 45.1.
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76th Eötvös-Kürschák Competition 1976

Organized by János Bolyai Mathematical Society

1. ABCD is a parallelogram. P is a point outside the parallelogram such that angles
∠PAB and ∠PCB have the same value but opposite orientation. Show that ∠APB =
∠DPC.

2. A lottery ticket is a choice of 5 distinct numbers from 1, 2, 3, . . . , 90. Suppose that 55
distinct lottery tickets are such that any two of them have a common number. Prove
that one can find four numbers such that every ticket contains at least one of the four.

3. Prove that if the quadratic x2 + ax+ b is always positive (for all real x) then it can be
written as the quotient of two polynomials whose coefficients are all positive.



Ercole Suppa

Eötvös-Kürschák
Competitions

Indice

JJ II

J I

Full Screen

Pag. 87 di 114

77th Eötvös-Kürschák Competition 1977

Organized by János Bolyai Mathematical Society

1. Show that there are no integers n such that n4 + 4n is a prime greater than 5.

2. ABC is a triangle with orthocenter H. The median from A meets the circumcircle
again at A1, and A2 is the reflection of A1 in the midpoint of BC. The points B2 and
C2 are defined similarly. Show that H, A2, B2 and C2 lie on a circle.

�

A

�

B
�

C
�

�� �
H

�

�

A1

�
A2

�

�
B1

�

B2

�

�C1

�

C2

�
�

�

�

3. Three schools each have n students. Each student knows a total of n + 1 students at
the other two schools. Show that there must be three students, one from each school,
who know each other.
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78th Eötvös-Kürschák Competition 1978

Organized by János Bolyai Mathematical Society

1. a and b are rationals. Show that if ax2 + by2 = 1 has a rational solution (in x and y),
then it must have infinitely many.

2. The vertices of a convex n-gon are colored so that adjacent vertices have different
colors. Prove that if n is odd, then the polygon can be divided into triangles with
non-intersecting diagonals such that no diagonal has its endpoints the same color.

3. A triangle has inradius r and circumradius R. Its longest altitude has length H. Show
that if the triangle does not have an obtuse angle, then H ≥ r+R. When does equality
hold?
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79th Eötvös-Kürschák Competition 1979

Organized by János Bolyai Mathematical Society

1. The base of a convex pyramid has an odd number of edges. The lateral edges of the
pyramid are all equal, and the angles between neighbouring faces are all equal. Show
that the base must be a regular polygon.

2. f is a real-valued function defined on the reals such that f(x) ≤ x and f(x + y) ≤
f(x) + f(y) for all x, y. Prove that f(x) = x for all x.

3. An n× n array of letters is such that no two rows are the same. Show that it must be
possible to omit a column, so that the remaining table has no two rows the same.
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80th Eötvös-Kürschák Competition 1980
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. The points of space are coloured with five colours, with all colours being used. Prove
that some plane contains four points of different colours.

2. Let n > 1 be an odd integer. Prove that a necessary and sufficient condition for the
existence of positive integers x and y satisfying

4
n

=
1
x

+
1
y

is that n has a prime divisor of the form 4k − 1.

3. In a certain country there are two tennis clubs consisting of 1000 and 1001 members
respectively. All the members have different playing strength, and the descending order
of palying strengths in each club is known. Find a procedure which determines, within
11 games, who is in the 1001st place among the 2001 players in these clubs. It is
assumed that a stronger player always beats a weaker one.
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81st Eötvös-Kürschák Competition 1981
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Prove that

AB + PQ+QR+RP ≤ AP +AQ+AR+BP +BQ+BR

where A, B, P , Q and R are any five points in a plane.

2. Let n > 2 be an even number. The squares of an n × n chessboard are coloured with
1
2n

2 colours in such a way that every colour is used for colouring exactly two of the
squares. Prove that one can place n rooks on squares of n different colours such that
no two of the rooks can take each other.

3. For a positive integer n, r(n) denote the sum of the remainders when n is divided by
1, 2, . . . , n respectively. Prove that r(k) = r(k− 1) for infinitely many positive integers
k.
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82nd Eötvös-Kürschák Competition 1982
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. A cube of integral dimensions is given in space so that all four vertices of one of the
faces are lattice points. Prove that the other four vertices are also lattice points.

2. Prove that for any integer k > 2, there exist infinitely many positive integers n such
that the least common multiple of n, n + 1, . . . , n + k − 1 is greater than the least
common multiple of n+ 1, n+ 2, . . . , n+ k.

3. The set of integers is coloured in 100 colours in such a way that all the colours are used
and the following is true. For any choice of intervals [a, b] and [c, d] of equal length
and with integral endpoints, if a and c as well as b and d, respectively, have the same
colour, then the whole intervals [a, b] and [c, d] are identically coloured in that, for any
integer x, 0 ≤ x ≤ b − a, the numbers a + x and c + x are of the same colour. Prove
that -1982 and 1982 are of different colours.
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83rd Eötvös-Kürschák Competition 1983
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Let x, y and z be rational numbers satisfying

x3 + 3y3 + 9z3 − 9xyz = 0

Prove that x = y = z = 0.

2. Prove that f(2) ≥ 3n where the polynomial f(x) = xn + a1xn−1 + · · ·+ an−1x+ 1 has
non-negative coefficients and n real roots.

3. Given are n + 1 points P1, P2, . . . , Pn and Q in the plane, no three collinear. For any
two different points Pi and Pj , there is a point Pk such that the point Q lies inside
the triangle PiPjPk. Prove that n is an odd number.
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84th Eötvös-Kürschák Competition 1984
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Writing down the first 4 rows of the Pascal triangle in the usual way and then adding
up the numbers in vertical columns, we obtain 7 numbers as shown above. If we repeat
this procedure with the first 1024 rows of the Pascal triangle, how many of the 2047
numbers thus obtained will be odd?

1
1 1

1 2 1
1 3 3 1

1 1 4 3 4 1 1

2. A1B1A2, B1A2B2, A2B2A3, . . . , B13A14B14, A14B14A1 and B14A1B1 are equilateral
rigid plates that can be folded along the edges A1B1, B1A2, . . . , A14B14 and B14A1

respectively. Can they be folded so that all 28 plates lie in the same plane?

3. Given are n integers, not necessarily distinct, and two positive integers p and q. If
the n numbers are not all distinct, choose two equal ones. Add p to one of them and
subtract q from the other. If there are still equal ones among the n numbers, repeat
this procedure. Prove that after a finite number of steps, all n numbers are distinct.
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85th Eötvös-Kürschák Competition 1985
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. The convex (n+ 1)-gon P0P1 . . . Pn is partitioned into n− 1 triangles by n− 2 nonin-
tersecting diagonals. Prove that the triangles can be numbered from 1 to n − 1 such
that for 1 ≤ i ≤ n− 1, Pi is a vertex of the triangle numbered i.

2. Let n be a positive integer. For each prime divisor p of n, consider the highest power
of p which does not exceed n. The sum of these powers is defined as the power-sum
of n. Prove that there exist infinitely many positive integers which are less than their
respective power-sums.

3. Let each vertex of a triangle be reflected across the opposite side. Prove that the area
of the triangle determined by the three points of reflection is less than five times the
area of the original triangle.
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86th Eötvös-Kürschák Competition 1986
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Prove that three rays from a given point contain three face diagonals of a rectangular
block if and only if the rays include pairwise acute angles such that their sum is 180◦.

2. Let n be an integer greater than 2. Find the maximum value for h and the minimum
value for H such that for any positive numbers a1, a2, . . . , an,

h <
a1

a1 + a2
+

a2

a2 + a3
+ · · ·+ an

an + a1
< H

3. A and B play the following game. They arbitrarily select k of the first 100 positive
integers. If the sum of the selected numbers is even, then A wins. If their sum is odd,
then B wins. For what values of k is the game fair?
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87th Eötvös-Kürschák Competition 1987
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Find all 4-tuples (a, b, c, d) of distinct positive integers for which a + b = cd and ab =
c+ d.

2. Does there exist an infinite set of points in space having at least one but finitely many
points on each plane?

3. A club has 3n + 1 members. Every two members play exactly one of tennis, chess
and table tennis against each other. Moreover, each member plays each game against
exactly n other members. Prove that there exist three members such that every two
of the three play a different game.
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88th Eötvös-Kürschák Competition 1988
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. P is a point inside a convex quadrilateral ABCD such that the areas of the triangles
PAB, PBC, PCD and PDA are all equal. Prove that either AC or BD bisects the
area of ABCD.

2. From among the numbers 1, 2, . . . , n, we want to select triples (a, b, c) such that a <
b < c and, for two selected triples (a, b, c) and (a′, b′, c′), at most one of the equalities
a = a′, b = b′ and c = c′ holds. What is the maximum number of such triples?

3. The vertices of a convex quadrilateral PQRS are lattice points. E is the point of
intersection of PR and QS and ∠SPQ + ∠PQR < 180◦. Prove that there exists a
lattice point other than P or Q which lies inside or on the boundary of triangle PQE.
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89th Eötvös-Kürschák Competition 1989
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Given are two intersecting lines e and f and a circle having no points of intersection
with the lines. Construct a line parallel to f such that the ratio of the lengths of the
sections of this line within the circle and between e and the circle is maximum.

2. For any positive integer n, denote by S(n) the sum of its digits in base ten. For
which positive integers M is it true that S(Mk) = S(M) for all integers k such that
1 ≤ k ≤M?

3. From an arbitrary point (x, y) in the coordinate plane, one is allowed to move to
(x, y + 2x), (x, y − 2x), (x + 2y, y) or (x, x − 2y). However, one cannot reverse the
immediately preceding move. Prove that starting from the point

(
1,
√

2
)
, it is not

possible to return there after any number of moves.
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90th Eötvös-Kürschák Competition 1990
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Given in the plane are two intersecting lines e and f , and a circle C which does not
intersect the two lines. For an arbitrary chord AB of C parallel to f , the line AB
intersects e at E. Construct AB so as to maximize AB

AE .

2. For a positive integer n, let S(n) denote the sum of its digits in base 10. Find all
positive integers m such that S(m) = S(km) for all positive integers k ≤ m.

3. From a point (x, y) in the coordinate plane, we can go north to (x, y + 2x), south to
(x, y−2x), east to (x+2y, y) or west to (x−2y, y). No other moves are permitted, and
if we move from P to Q, we cannot double back to P on the very next move. Prove
that if we start from

(
1,
√

2
)
, we can never return there.
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91st Eötvös-Kürschák Competition 1991
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Prove that (ab + c)n − c ≤ an(b + c)n − anc, where n is a positive integer and a ≥ 1,
b ≥ 1 and c > 0 are real numbers.

2. A convex polyhedron has two triangular faces and three quadrilateral faces. Each vertex
of one of the triangular faces is joined to the point of intersection of the diagonals of
the opposite quadrilateral face. Prove that these three lines are concurrent.

3. Given are 998 red points in the plane, no three on a line. A set of blue points is chosen
so that every triangle with all three vertices among the red points contains a blue point
in its interior. What is the minimum size of a set of blue points which works regardless
of the positions of the red points?
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92nd Eötvös-Kürschák Competition 1992
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Given n positive numbers, define their strange mean as the sum of the squares of the
numbers divided by the sum of the numbers. Define their third power mean as the
cube root of the arithmetic mean of their third powers.

(a) For n = 2, determine which of the following assertions is true.

(i) The strange mean can never be smaller than the third power mean.
(ii) The strange mean can never be larger than the third power mean.
(iii) Depending on the choice of numbers, the strange mean might be larger or

smaller than the third power mean.

(b) Answer the same question for n = 3.

2. For an arbitrary positive integer k, let f1(k) be the square of the sum of the digits of
k. For n > 1, let fn(k) = f1(fn−1(k)). What is the value of f1992

(
21991

)
?

3. Given a finite number of points in the plane, no three of which are collinear, prove that
they can be coloured in two colours so that there is no half-plane that contains exactly
three given points of one colour and no points of the other colour.
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93rd Eötvös-Kürschák Competition 1993
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Prove that if a and b are positive integers then there maybe at most a finite number
of integers n, such that both an2 + b and a(n+ 1)2 + b are perfect squares.

2. The sides of triangle ABC have different lengths. Its incircle touches the sides BC,
CA and AB at points K, L and M , respectively. The line parallel to LM and passing
through B cuts KL at point D. The line parallel to LM and passing through C cuts
MK at point E. Prove that DE passes through the midpoint of LM .

3. Let f(x) = x2n + 2x2n−1 + 3x2n−2 + · · ·+ (2n+ 1−k)xk + · · ·+ 2nx+ (2n+ 1) where n
is a given positive integer. Find the minimum value of f(x) on the set of real numbers.
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94th Eötvös-Kürschák Competition 1994
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Let λ be the ratio of the sides of a parallelogram, with λ > 1. Determine in terms of
λ the maximum possible measure of the acute angle formed by the diagonals of the
parallelogram.

2. Consider the diagonals of a convex n-gon.

(a) Prove that if any n− 3 of them are omitted, there are n− 3 remaining diagonals
that do not intersect inside the polygon.

(b) Prove that one can always omit n− 2 diagonals such that among any n− 3 of the
remaining diagonals, there are two which intersect inside the polygon.

3. For 1 ≤ k ≤ n the set Hk, k = 1, 2, . . . , n, consists of k pairwise disjoint intervals of the
real line. Prove that among the intervals that form the sets Hk, one can find [(n+1)/2]
pairwise disjoint ones, each of which belongs to a different set Hk.
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95th Eötvös-Kürschák Competition 1995
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. A lattice rectangle with sides parallel to the coordinate axes is divided into lattice
triangles, each of area 1/2. Prove that the number of right triangles among them is
at least twice the length of the shorter side of rectangle. (A lattice point is one whose
coordinates are integers. A lattice polygon is one whose vertices are lattice points.)

2. If +1 or −1 is substituted for every variable of a gives polynomial in n variables, its
value will be positive if the number of −1’s is even, and negative if it is odd. Prove
that the degree of the polynomial is at least n. (i.e. it has a term in which the sum of
the exponents of the variables is at least n).

3. No three of the points A, B, C andD are collinear. Let E and F denote the intersection
points of lines AB and CD resp. linesBC andDA. Circles are drawn with the segments
AC, BD and EF as diameters. Show that either the three circles have a common point
or they are pairwise disjoint.
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96th Eötvös-Kürschák Competition 1996
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. In the quadrilateral ABCD, AC is perpendicular to BD and AB is parallel to DC.
Prove that BC ·DA ≥ AB · CD.

2. The same numbers of delegates from countries A and B attend a conference. Some
pairs of them already know each other. Prove that there exists a non-empty set of
delegates from country A such that either every delegate from country B has an even
number of acquaintances among them, or every delegate from country B has an odd
number of acquaintances among them.

3. For any non-negative integer n mark any 2kn+ 1 diagonals of a convex n-gon. Prove
that there exists a poygonal line consisting of 2k+ 1 diagonals marked which does not
intersect itself. Show that this is not necessarily true if the number of marked diagonals
is kn.
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97th Eötvös-Kürschák Competition 1997
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Let p be an odd prime number. Consider points in the coordinate plane both coordi-
nates of which are numbers in the set {0, 1, 2, . . . , p − 1}. Prove that it is possible to
choose p of these points such that no three are collinear.

2. The incircle of triangle ABC touches the sides at A1, B1 and C1. Prove that its
circumcentre O and incentre O′ are collinear with the orthocentre of triangle A1B1C1.

3. Prove that the edges of a planar graph can be coloured in three colours so that there
is no single-colour circuit.
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98th Eötvös-Kürschák Competition 1998
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Does there exist an infinite sequence of positive integers in which no term divides any
other terms have a common divisor greater than 1, but there is no integer, greater than
1, which divides each element of the sequence?

2. Prove that, for every positive integer n, there exists a polynomial with integer coeffi-
cients whose values at 1, 2, . . . , n are different powers of 2.

3. Determine all integers N ≥ 3 for which there exist N points in the plane, no 3 collinear,
such that a triangle determined by any 3 vertices of their convex hull contains exactly
one of the points in its interior.
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99th Eötvös-Kürschák Competition 1999
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Consider the number of positive even divisors for each of the integers 1, 2, . . . , n and
form the sum of these numbers. Prepare a similar sum, this time using the odd divisors
of the given numbers. Prove that the two sums differ by at most n.

2. Given a triangle in the plane, construct the point P inside the triangle which has the
following property: the feet of the perpendicular dropped onto the lines of the sides
form a triangle the centroid of which is P .

3. For any natural number k, let there be given more than 2k different integers. Prove
that k + 2 of these numbers can be selected such that equality

x1 + x2 + · · ·+ xm = y1 + y2 + · · ·+ ym

holds for some positive integer m and selected numbers x1 < x2 < · · · < xm, y1 < y2 <
· · · < ym only if xi = yi for each 1 ≤ i ≤ m.
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100th Eötvös-Kürschák Competition 2000
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. For any positive integer n, consider in the Cartesian plane the square whose vertices
are A(0, 0), B(n, 0), C(n, n) and D(0, n). The grid points of the integer lattice inside
or on the boundary of this square are coloured either red or green in such a way that
every unit lattice square in the square has exactly two red vertices. How many such
colourings are possible?

2. Let P be a point in the plane of the non-equilateral triangle ABC different from its
vertices. Let the lines AP , BP and CP meet the circumcircle of the triangle at AP ,
BP and CP , respectively. Prove that there are exactly two points P and Q in the plane
that the triangles APBPCP and AQBQCQ are equilateral. Prove also that the line PQ
passes through the circumcentre of triangle ABC.

3. Let k denote a non-negative integer and assume that the integers a1, . . . , an leave at
least 2k different remainders when they are divided by n+k. Prove that some of them
add up to an integer divisible by n+ k.
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101st Eötvös-Kürschák Competition 2001
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Given 3n−1 points in the plane, no three of which are collinear, show that it is possible
to select 2n points, such that their convex hull should not be a triangle.

2. Let k ≥ 3 be an integer, and n ≥
(
k
3

)
. Prove that if ai, bi, ci (1 ≤ i ≤ n) are 3n distinct

real numbers then there are at least k+1 different numbers among the numbers ai +bi,
ai + ci, bi + ci. Show that the statement is not necessarily true for n =

(
k
3

)
.

3. In a square lattice, consider any triangle of minimum area that is similar to a given
triangle. Prove that the centre of its circumscribed circle is not a lattice point.
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102nd Eötvös-Kürschák Competition 2002
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. The sides of an acute-angled triangle are pairwise different, its orthocentre is M , the
centre of its inscribed circle is K, and the centre of its circumscribed circle is O. Prove
that if a circle passes through the points K, O, M and a vertex of the triangle, then it
also passes through another vertex.

2. Consider the sequence of the Fibonacci numbers defined by the recursion f1 = f2 = 1,
fn = fn−1 + fn−2(n ≥ 3). Assume that the fraction a

b , where a and b are positive
integers, is smaller than one of the fractions fn

fn−1
and fn+1

fn
but is greater than the

other. Show that b ≥ fn+1.

3. Prove that the set of edges formed by the sides and diagonals of a convex 3n-gon can be
partitioned into sets of three edges, such that the edges in each triple form a triangle.
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103rd Eötvös-Kürschák Competition 2003
Class 9 - 12, Category 1, Round 1

Organized by János Bolyai Mathematical Society

1. Circle k and the circumcircle of the triangle ABC are touching externally. Circle k is
also touching the rays AB and AC at the points P and Q, respectively. Prove that the
midpoint of the segment PQ is the centre of the excircle touching the side BC of the
triangle ABC.

2. Find the smallest positive integer different from 2004 with the property that there
exists a polynomial f(x) of integer coefficients such that the equation f(x) = 2004
has at least one integer solution and the equation f(x) = n has at least 2004 distinct
integer solutions.

3. Some points are given along the circumference of a circle, each of them is either red or
blue. The coloured points are subjects to the following two operations:

(a) a red point can be inserted anywhere along the circle while the colours of its two
neighbours are changed from red to blue and vice versa;

(b) if there are at least three coloured points present and there is a red one among
them then a red point can be removed while its two neighbours are switching
colours.

Starting with two blue points is it possible to end up with two red points after an
appropriate sequence of the above operations?
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