Corso di

Matematica per l'arte e l'economia

- Appunti di matematica -

Università Ca' Foscari di Venezia

Corso di laurea in Conservazione e gestione dei beni e delle attività culturali Percorso Economia e gestione dei beni e delle attività culturali (Egart)

Appunti di matematica per il corso di Matematica per l'arte e l'economia

Luciano Battaia

Versione del 15 febbraio 2016

Quest'opera è soggetta alla Creative Commons Public License versione 4.0 o posteriore. L'enunciato integrale della Licenza in versione 4.0 è reperibile all'indirizzo internet http://creativecommons.org/licenses/by-nc-nd/4.0/deed.it.

• Si è liberi di riprodurre, distribuire, comunicare al pubblico, esporre in pubblico, rappresentare, eseguire e recitare quest'opera alle seguenti condizioni:

Attribuzione Devi attribuire adeguatamente la paternità sul materiale, fornire un link alla licenza e indicare se sono state effettuate modifiche. Puoi realizzare questi termini in qualsiasi maniera ragionevolmente possibile, ma non in modo tale da suggerire che il licenziante avalli te o il modo in cui usi il materiale.

Non commerciale Non puoi usare il materiale per scopi commerciali.

Non opere derivate Se remixi, trasformi il materiale o ti basi su di esso, non puoi distribuire il materiale così modificato.

- Ogni volta che si usa o si distribuisce quest'opera, lo si deve fare secondo i termini di questa licenza, che va comunicata con chiarezza.
- In ogni caso si possono concordare con il titolare dei diritti d'autore usi di quest'opera in deroga da questa licenza.

Se gli allievi non capiscono, il torto è dell'insegnante che non sa spiegare. Né vale addossare la responsabilità alle scuole inferiori.

Dobbiamo prendere gli allievi così come sono, richiamare ciò che essi hanno dimenticato, o studiato sotto altra nomenclatura.

Se l'insegnante tormenta i suoi alunni, e invece di cattivarsi il loro amore, eccita odio contro sé e la scienza che insegna, non solo il suo insegnamento sarà negativo, ma il dover convivere con tanti piccoli nemici sarà per lui un continuo tormento.

 $Giuseppe \ Peano \ (1858-1932)$

Indice

Pr	emes	issa	X				
1	Rich	Richiami di concetti di base					
	1.1	Qualche prodotto e scomposizione notevole	1				
		1.1.1 Raccoglimento a fattor comune	1				
		1.1.2 Prodotto di una somma per una differenza	1				
		1.1.3 Quadrato di un binomio	2				
		1.1.4 Cubo di un binomio	2				
		1.1.5 Somma o differenza di due cubi	2				
	1.2	Richiami sui radicali	3				
	1.3	Frazioni algebriche	3				
2	Insie	emi, numeri	5				
	2.1	Insiemi	5				
	2.2	Operazioni tra insiemi	6				
	2.3	Numeri	8				
	2.4	Intervalli di numeri reali	9				
3	Un	Jn po' di geometria analitica 1					
	3.1	Coordinate cartesiane di punti nel piano e nello spazio	11				
	3.2	Le formule fondamentali della geometria analitica del piano	12				
	3.3	La retta nel piano cartesiano	12				
	3.4	La parabola nel piano cartesiano	14				
		3.4.1 Parabola con asse verticale	14				
		3.4.2 Parabola con asse orizzontale	14				
	3.5	La circonferenza nel piano cartesiano	15				
4	Equ	azioni	19				
	4.1	Equazioni lineari in una o due incognite	19				
	4.2	Equazioni di secondo grado in una incognita	20				
	4.3	Qualche equazione di grado superiore	20				
		4.3.1 Equazioni di tipo elementare	20				
		4.3.2 Equazioni scomponibili in fattori	21				
	4.4	Equazioni con radicali	21				
	4.5	Sistemi di equazioni lineari in due incognite	22				
	4.6	Risoluzione grafica di sistemi in due incognite	22				
5	Dise	equazioni	25				
	5.1	Disequazioni di primo grado	$\frac{-6}{25}$				
		5.1.1 Il caso di un'incognita	$\frac{-5}{25}$				
		5.1.2 Il caso di due incognite	26				
	5.2	Disequazioni di secondo grado	$\frac{-3}{27}$				
		5.2.1 Il caso di un'incognita	27				

		5.2.2 Il caso di due incognite	8
	5.3	Sistemi di disequazioni	9
		5.3.1 Sistemi in una incognita	9
		5.3.2 Sistemi in due incognite	9
	5.4	Disequazioni scomponibili in fattori	0
	5.5	Disequazioni con radicali	2
	5.6	Esercizi	3
6	Funz	zioni 3	5
	6.1	Funzioni	5
	6.2	Qualche grafico di base	1
	6.3	Richiami sulle potenze	2
	6.4	Le funzioni potenza	3
	6.5	Le funzioni esponenziali	4
	6.6	Le funzioni logaritmo	6
		6.6.1 Cenno sulle disequazioni con logaritmi ed esponenziali	8
	6.7	La funzione valore assoluto	8
		6.7.1 Valore assoluto o modulo	8
		6.7.2 Proprietà del valore assoluto	9
		6.7.3 Disequazioni con valore assoluto	9
	6.8	Grafici derivati	0
7	Anco	ora alcuni concetti di base sulle funzioni 5	5
	7.1	Operazioni sulle funzioni	
	7.2	Funzioni elementari e funzioni definite "a pezzi"	5
	7.3	Dominio delle funzioni elementari	
	7.4	Funzioni crescenti e decrescenti	
	7.5	Funzioni iniettive, suriettive, biiettive	
	7.6	Esercizi	
8	Limi	ti e continuità per funzioni di una variabile 5	g
•	8.1	Considerazioni introduttive	
	8.2	Intorni di un numero reale e punti di accumulazione	
	8.3	La retta reale estesa	
	8.4	La definizione di limite	
	8.5	Tre teoremi fondamentali sui limiti	
	8.6	Funzioni continue	
	8.7	Il calcolo dei limiti	
	8.8	Ordini di infinito	
	8.9	Qualche esempio di calcolo dei limiti	9
9	Deri	vate per funzioni di una variabile 7	1
	9.1	Derivata e tangente al grafico di una funzione	
	9.2	Derivate successive	
	9.3	Esercizi	
10	Graf	ici di funzioni di una variabile 7'	7
10		Massimi e minimi per una funzione	
		Funzioni convesse e concave	
		Asintoti al grafico di una funzione	
	TO.O	Tidingon of ground up und fundione	1

viii Luciano Battaia

Appunti per un corso di Matematica per l'arte e l'e	т есопоши
---	-----------

	Conclusioni sul tracciamento del grafico di una funzione	
11 Funz 11.1 11.2 11.3	zioni di due variabili Funzioni di due variabili - Introduzione	89 89 90 99
11.5 11.6	Derivate parziali	102 105
	Esercizi	108 111
Alfabet	o greco	113
Indice a	nalitico	115

Premessa

Questi appunti contengono lo schema degli argomenti di matematica per il corso di Matematica per l'arte e l'economia, corso di laurea in Conservazione e gestione dei beni e delle attività culturali - Percorso Economia e gestione dei beni e delle attività culturali (Egart).

Si fa presente che nel corso si trattano anche alcune applicazioni della matematica in ambito economico e finanziario e alcuni approfondimenti che riguardano le relazioni fra matematica e arte, argomenti che non sono coperti da queste dispense.

Gli studenti sono pregati di segnalare eventuali, inevitabili, errori all'indirizzo di posta elettronica batmath@gmail.com.

1 Richiami di concetti di base

In questo capitolo richiamiamo alcuni concetti di "matematica di base", già noti dalle scuole medie superiori.

1.1 Qualche prodotto e scomposizione notevole

In molti casi la risoluzione degli esercizi richiede l'esecuzione di prodotti di espressioni letterali al fine di semplificare le scritture o di ottenere i risultati voluti. Molti di questi prodotti sono notevoli, in quanto si presentano frequentemente e possono essere eseguiti rapidamente con l'uso di opportuni accorgimenti. Gli stessi accorgimenti, usati "in senso inverso", consentono di trasformare in prodotti certe espressioni algebriche scritte sotto forma di somma, e anche questa è una tecnica necessaria per risolvere gli esercizi. Qui di seguito raccogliamo alcune delle formule più comuni, fornendo anche qualche esempio di applicazione.

1.1.1 Raccoglimento a fattor comune

Conviene considerare subito degli esempi.

Esempio 1.1.
$$6x + 2x^2y + 4xy^2 = 2x(3 + xy + 2y^2)$$
.

Esempio 1.2.
$$a^2b + ab^2 = ab(a+b)$$
.

Esempio 1.3. $(a+b)^2 - 2b(a+b) + 2a(a+b) = (a+b)(a+b-2b+2a) = (a+b)(3a-b)$. In questo caso il fattore da raccogliere non è costituito da un semplice monomio, come nei due casi precedenti, ma dal polinomio (a+b).

Esempio 1.4. $3b^2(x^2+y) - 6b^3(x^2+y) + 12b^4(x^2+y) = 3b^2(x^2+y)(1-2b+4b^2)$. In questo caso i fattori comuni da raccogliere sono il monomio $3b^2$ e il polinomio (x^2+y) .

A volte il raccoglimento può richiedere "due tempi": si tratta del cosiddetto raccoglimento a fattor comune parziale.

Esempio 1.5.
$$ax + ay + bx + by = a(x + y) + b(x + y) = (x + y)(a + b)$$
.

Esempio 1.6.
$$ax - bx + by - ay - b + a = x(a - b) - y(a - b) + (a - b) = (a - b)(x - y + 1)$$
.

Come si vede questo tipo di processo richiede un po' più di fantasia!

1.1.2 Prodotto di una somma per una differenza

Il prodotto di una somma di due quantità per la loro differenza si può eseguire secondo la seguente regola

$$(1.1) (a+b)(a-b) = a^2 - b^2$$

dove a e b possono essere due monomi o due polinomi qualunque. Questa formula consente di eseguire velocemente il prodotto indicato e, letta in senso inverso, di trasformare la differenza di due quadrati in un prodotto. Si noti che non è possibile invece scomporre in prodotto la somma di due quadrati: $a^2 + b^2$.

Esempio 1.7.
$$(x-1)(x+1) = x^2 - 1$$
.

Esempio 1.8.
$$(-x-2)(-x+2) = (-x)^2 - 4 = x^2 - 4$$
.

Esempio 1.9.
$$x^2 - 3 = (x - \sqrt{3})(x + \sqrt{3}).$$

Esempio 1.10.
$$(xy+2x+3y)(xy+2x-3y) = [(xy+2x)+3y][(xy+2x)-3y] = (xy+2x)^2 - (3y)^2 = x^2y^2 + 4x^2y + 4x^2 - 9y^2$$
.

1.1.3 Quadrato di un binomio

La formula seguente consente di eseguire velocemente il quadrato di una somma o differenza di due addendi e, letta in senso inverso, di scomporre un particolare trinomio.

$$(a+b)^2 = a^2 + 2ab + b^2, \quad (a-b)^2 = a^2 - 2ab + b^2.$$

Esempio 1.11.
$$(x+2y)^2 = x^2 + 2 \cdot x \cdot 2y + (2y)^2 = x^2 + 4xy + 4y^2$$
.

Esempio 1.12.
$$(4x - 3y)^2 = (4x)^2 - 2(4x)(3y) + (3y)^2 = 16x^2 - 24xy + 9y^2$$
.

Esempio 1.13.
$$x^2 + 4x + 4 = (x+2)^2$$
.

Le tecniche precedenti, e quelle che presenteremo successivamente, possono anche essere combinate tra loro.

Esempio 1.14.
$$x^3 + 6x^2 + 9x = x(x^2 + 6x + 9) = x(x+3)^2$$
.

Esempio 1.15.
$$(x+y-z)(x+y+z) = [(x+y)-z][(x+y)+z] = (x+y)^2-z^2 = x^2+2xy+y^2-z^2$$
.

Esempio 1.16. $(x+y+z)^2 = [(x+y)+z]^2 = (x+y)^2 + 2(x+y)z + z^2 = x^2 + 2xy + y^2 + 2xz + 2yz + z^2$. Ragionando come in questo esempio si può giungere a una regola per sviluppare il quadrato di una somma di un qualunque numero di addendi:

$$(a+b+c+d+\dots)^2 = a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd+\dots$$

1.1.4 Cubo di un binomio

La formula seguente consente di eseguire velocemente il cubo di una somma o differenza di due addendi e, letta in senso inverso, di scomporre un particolare quadrinomio.

$$(1.3) (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3, (a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3.$$

Esempio 1.17.
$$(2x+y)^3 = (2x)^3 + 3(2x)^2y + 3 \cdot 2x(y)^2 + y^3 = 8x^3 + 12x^2y + 6xy^2 + y^3$$
.

Esempio 1.18.
$$(x^2 - 3y)^3 = (x^2)^3 - 3(x^2)^2 3y + 3x^2(3y)^2 - (3y)^3 = x^6 - 9x^4y + x^2y^2 - 27y^3$$
.

Esempio 1.19.
$$a^3b^3 - 3a^2b^2 + 3ab - 1 = (ab - 1)^3$$
.

1.1.5 Somma o differenza di due cubi

Sia la somma che la differenza di due cubi possono essere scomposte in fattori con le seguenti regole:

(1.4)
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2), \quad a^3 - b^3 = (a-b)(a^2 + ab + b^2).$$

Esempio 1.20.
$$(x^3 - 1) = (x - 1)(x^2 + x + 1)$$
.

Esempio 1.21.
$$(8x^3 + 27y^3) = (2x + 3y)(4x^2 - 6xy + 9y^2)$$
.

Si noti che, a differenza del caso dei quadrati, si può scomporre sia la *somma* che la *differenza* di due cubi. Si noti anche che i due trinomi tra parentesi dopo la scomposizione *non* sono dei quadrati, perché *non* c'è il doppio prodotto.

1.2 Richiami sui radicali

In molte situazioni è utile saper semplificare espressioni contenenti radicali, senza approssimarli fin da subito con espressioni decimali. Un semplice esempio chiarirà il perché di questo fatto.

Supponiamo di dover calcolare $(\sqrt{2})^8$. Se teniamo conto delle proprietà delle potenze e dei radicali otteniamo $(\sqrt{2})^8 = \left((\sqrt{2})^2\right)^4 = 2^4 = 16$, senza alcuna approssimazione. Se invece approssimiamo $\sqrt{2}$ con 1.4, commettiamo un errore di poco più di un centesimo, trascurabile in molte situazioni. Calcolando però l'ottava potenza otteniamo (circa) 14.76, al posto del risultato corretto 16: un errore decisamente troppo grande! Naturalmente usando un maggior numero di cifre dopo la virgola per approssimare la radice quadrata di 2 le cose si sarebbero rimesse a posto, ma non sempre succede così, e il problema della correttezza delle approssimazioni numeriche è molto complesso.

Richiamiamo qui, fornendo anche qualche esempio, solo alcune delle tecniche di base utili per operare con i radicali, segnalando che i *radicandi* saranno sempre considerati *positivi* e che saremo principalmente interessati al caso di radici quadrate o al massimo cubiche.

(1.5)
$$\sqrt[n]{a^n} = a, \quad (\sqrt[n]{a})^n = a \quad (\text{definizioni}).$$

(1.6)
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b} \quad \text{(radice di un prodotto)}.$$

(1.7)
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad \text{(radice di un quoziente)}$$

(1.8)
$$(\sqrt[n]{a})^m = \sqrt[n]{a^m}$$
 (potenza di un radicale).

(1.9)
$$\sqrt[n]{a^{np}} = a\sqrt[n]{a^p}$$
 ("portare fuori o dentro" dal segno di radice).

(1.10)
$$\sqrt[np]{a^{mp}} = \sqrt[n]{a^m}$$
 (semplificazione di un radicale).

Ricordiamo poi che non è valida alcuna proprietà relativamente alla radice di una somma: $\sqrt[n]{a+b} \neq \sqrt[n]{a} + \sqrt[n]{b}$. Per quanto riguarda poi le operazioni di somma e prodotto coinvolgenti radicali si possono sommare solo radicali simili, mentre per moltiplicare due radicali bisogna "ridurli allo stesso indice".

Esempio 1.22.
$$5\sqrt{8} + 3\sqrt{2} = 5\sqrt{2^22} + 3\sqrt{2} = 5 \cdot 2\sqrt{2} + 3\sqrt{2} = 13\sqrt{2}$$
.
Esempio 1.23. $3\sqrt{27} - \sqrt{12} + \sqrt{2} = 3\sqrt{3^23} - \sqrt{2^23} + \sqrt{2} = 3 \cdot 3\sqrt{3} - 2\sqrt{3} + \sqrt{2} = 7\sqrt{3} + \sqrt{2}$.
Esempio 1.24. $\sqrt{2}\sqrt[3]{2} = \sqrt[6]{2^3}\sqrt[6]{2^2} = \sqrt[6]{8} \cdot 4 = \sqrt[6]{32}$.

1.3 Frazioni algebriche

Una frazione algebrica è il quoziente di due polinomi. Per esempio

$$\frac{x^3 + xy + y^2 + 2}{x^2 - y}$$

è una frazione algebrica.

Le operazioni sulle frazioni algebriche si eseguono esattamente come le operazioni sulle frazioni numeriche. Saremo interessati a qualche semplificazione, somma o prodotto di frazioni algebriche (in casi molto semplici!).

$$Esempio\ 1.25.\ \frac{x^2+x}{x^2-1}+\frac{x+2}{x-1}=\frac{x(x+1)}{(x-1)(x+1)}+\frac{x+2}{x-1}=\frac{x+x+2}{x-1}=\frac{2x+2}{x-1}\ .$$

Esemplo 1.26.
$$\frac{3x(x+2)}{x+1} \cdot \frac{x-1}{x+2} = \frac{3x(x+2)}{x+1} \cdot \frac{x-1}{x+2} = \frac{3x(x-1)}{x+1} = \frac{3x^2-3x}{x+1}$$
.

Esempio 1.27.
$$\frac{x^2-1}{x^3+1} = \frac{(x-1)(x+1)}{(x+1)(x^2-x+1)} = \frac{x-1}{x^2-x+1}$$
.

2 Insiemi, numeri

2.1 Insiemi

Assumiamo la nozione di *insieme* come primitiva, fidandoci della nostra intuizione. Volendo si potrebbero usare delle circonlocuzioni, del tipo "un insieme è una *collezione* di oggetti, detti elementi", ma in realtà non avremmo detto nulla di significativo: è come dire "un insieme è un insieme". Abitualmente, ma non sempre, indicheremo gli insiemi con le lettere maiuscole corsive: A, B, \ldots

La scrittura

$$(2.1) x \in A$$

sta ad indicare che l'oggetto x è un elemento dell'insieme A e si legge "x appartiene ad A". La (2.1) si può scrivere anche $A \ni x$. La negazione della (2.1) si scrive

$$(2.2) x \notin A,$$

che si legge, naturalmente, "x non appartiene ad A". La (2.2) si può scrivere anche $A \not\ni x$.

Due insiemi sono uguali se e solo se hanno gli stessi elementi. Questo si può scrivere, usando il simbolo \forall ("per ogni"),

$$(2.3) A = B \Leftrightarrow (\forall x \ x \in A \Leftrightarrow x \in B)$$

dove la doppia freccia " \Leftrightarrow " si legge " $se\ e\ solo\ se$ ".

È conveniente introdurre uno speciale insieme, detto *insieme vuoto* e indicato con \emptyset , privo di elementi. Poiché due insiemi possono essere diversi se e solo differiscono per qualche loro elemento, dovremo ritenere che di insiemi vuoti ce ne sia uno solo.

Per assegnare un insieme possiamo usare due metodi.

- 1. Rappresentazione estensiva: consiste nell'elencare tutti gli elementi, per esempio $A = \{0, \pi, \sqrt{2}, \text{Pordenone}\}.$
- 2. Rappresentazione intensiva: consiste nell'assegnare gli elementi indicando una proprietà che li contraddistingue, per esempio $A = \{ x \mid x \text{ è un numero naturale pari } \}$.

La seconda possibilità è soprattutto indicata per insiemi che contengano infiniti elementi e in particolare per sottoinsiemi di altri insiemi. Anche gli insiemi infiniti però potranno, se non sono possibili equivoci, essere descritti per elencazione. Potremo, a volte, scrivere $A = \{3, 6, 9, 12, \dots\}$ per indicare l'insieme dei numeri naturali multipli di 3, ma occorre prestare la massima attenzione. Per esempio se scrivessimo

$$A = \{ 2, 3, \dots \}$$

non sarebbe assolutamente possibile dedurre se intendiamo riferirci ai numeri naturali maggiori o uguali a 2, oppure ai numeri primi.

È da segnalare il fatto che, se per assegnare un insieme dobbiamo necessariamente avere un criterio per decidere quali sono i suoi elementi, a volte la verifica esplicita se un elemento sta o no in un insieme può essere estremamente complessa. L'esempio classico di questa situazione è

quello dell'insieme, P, dei numeri primi. Mentre è immediato che, per esempio $31 \in P$, è molto più difficile verificare che anche $15\,485\,863 \in P$, e per verificare che $2^{43\,112\,609}-1 \in P$ (uno dei più grandi⁽¹⁾ primi conosciuti alla fine del 2009, con ben $12\,978\,189$ cifre) ci vogliono lunghissimi tempi di calcolo anche su un elaboratore molto potente.

Dati due insiemi A e B, se ogni elemento di A è anche elemento di B, diremo che A è un sottoinsieme di B, o che è contenuto in B, o anche che B è un soprainsieme di A, o che contiene A, e scriveremo

$$(2.4) A \subseteq B , B \supseteq A.$$

Osserviamo esplicitamente che, con questa notazione, per ogni insieme A si ha $A \subseteq A$, cioè ogni insieme è contenuto in se stesso. Per indicare che $A \subseteq B$, ma che esiste qualche elemento di B che non è contenuto in A useremo la scrittura

$$(2.5) A \subset B, \text{ oppure } B \supset A$$

e parleremo di sottoinsieme (o soprainsieme) proprio.

Tra i vari sottoinsiemi di un insieme possiamo sempre annoverare anche l'insieme vuoto: $\emptyset \subseteq A$, $\forall A$. Ci potranno interessare anche sottoinsiemi costituiti da un solo elemento: se $a \in A$, allora $\{a\} \subseteq A$. Si noti la radicale differenza che c'è tra i due simboli $\in e \subset (o \subseteq)$: il primo mette in relazione oggetti diversi (elementi e insiemi), il secondo mette in relazione oggetti dello stesso tipo (insiemi).

Dato un insieme A ammettiamo di poter considerare l'insieme di tutti i suoi sottoinsiemi, detto insieme delle parti e indicato con $\mathcal{P}(A)$. Per esempio, se $A = \{a, b\}$, allora

$$\mathscr{P}(A) = \{\emptyset, \{a\}, \{b\}, A\}.$$

2.2 Operazioni tra insiemi

Definizione 2.1 (Unione di insiemi). Dati due insiemi A e B, si chiama loro unione, e si indica con $A \cup B$, l'insieme formato dagli elementi che appartengono ad A, a B o a entrambi⁽²⁾.

$$(2.6) A \cup B \stackrel{\text{def}}{=} \{ x \mid x \in A \lor x \in B \} .$$

Esempio 2.1. Se $A = \{0, 1, 2, 3\}$ e $B = \{2, 3, 4\}$, allora $A \cup B = \{0, 1, 2, 3, 4\}$.

Definizione 2.2 (Intersezione di insiemi). Dati due insiemi A e B, si chiama loro intersezione, e si indica con $A \cap B$, l'insieme formato dagli elementi che appartengono contemporaneamente ad A e a B.

(2.7)
$$A \cap B \stackrel{\text{def}}{=} \{ x \mid x \in A \land x \in B \} .$$

Esempio 2.2. Se A e B sono come nell'esempio precedente, allora $A \cap B = \{ 2, 3 \}$.

Due insiemi la cui intersezione sia vuota si dicono disgiunti. L'insieme vuoto è sempre disgiunto da ogni altro insieme.

¹A coloro che si chiedono quale possa essere l'interesse concreto a scoprire numeri primi sempre più grandi, segnaliamo che tutti gli algoritmi crittografici oggi usati, in particolare nel web, sono basati sull'uso di numeri primi con parecchie centinaia di cifre.

 $^{^2\}text{I}$ simboli $^\vee,\ vel,\ \text{ed}\ \wedge,\ et,\ \text{sono}$ normalmente usati in logica e nella teoria degli insiemi. Significano, rispettivamente, "o, oppure" ed "e contemporaneamente".

Le operazioni di unione e intersezione sono ovviamente associative e dunque si potrà scrivere l'unione o intersezione di più insiemi senza usare alcuna parentesi:

$$(A \cup B) \cup C = A \cup (B \cup C) = A \cup B \cup C$$
, $(A \cap B) \cap C = A \cap (B \cap C) = A \cap B \cap C$.

Le seguenti sono alcune proprietà di uso comune dell'unione e dell'intersezione e si possono verificare per utile esercizio.

$$A \cup A = A; \quad A \cap A = A;$$

$$A \cup B = B \cup A; \quad A \cap B = B \cap A;$$

$$A \cup \emptyset = A; \quad A \cap \emptyset = \emptyset;$$

$$A \cup B \supseteq A; \quad A \cap B \subseteq A;$$

$$A \cup B = A \Leftrightarrow A \supseteq B; \quad A \cap B = A \Leftrightarrow A \subseteq B.$$

Valgono anche le proprietà distributive di un'operazione rispetto all'altra:

$$(2.8) A \cup (B \cap C) = (A \cup B) \cap (A \cup C) , \quad A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$$

Si noti che le proprietà distributive sono due: dell'unione rispetto all'intersezione e dell'intersezione rispetto all'unione. Nel caso della somma e prodotto tra numeri vale solo la proprietà distributiva del prodotto rispetto alla somma: a(b+c) = ab + ac.

Definizione 2.3 (Differenza di insiemi). Dati due insiemi A e B, si chiama loro differenza, e si indica con $A \setminus B$, o anche con A - B, l'insieme formato dagli elementi che appartengono ad A ma non a B.

(2.9)
$$A \setminus B \stackrel{\text{def}}{=} \{ x \mid x \in A \land x \notin B \} .$$

Esempio 2.3. Se $A \in B$ sono come nell'esempio già considerato per l'unione, allora $A \setminus B = \{0, 1\}$.

Nel caso che $B \subseteq A$, l'insieme $A \setminus B$ si chiama anche complementare di B rispetto ad A e si indica con $\mathcal{C}_A B$, o semplicemente con $\mathcal{C}_B B$ se l'insieme A è precisato una volta per tutte. In molte situazioni si conviene di fissare un insieme, detto universo, di cui tutti gli insiemi della teoria sono sottoinsiemi. In questo caso quando si parla di complementare senza ulteriori precisazioni si intende sempre il complementare rispetto all'universo.

Segnaliamo che la teoria degli insiemi che qui stiamo presentando è la cosiddetta teoria ingenua, più che sufficiente per tutti i nostri scopi ma non esente da problemi: tra gli altri ricordiamo il fatto che essa può creare dei paradossi come quello famoso⁽³⁾ del barbiere.

Assumiamo anche un altro concetto primitivo, che utilizzeremo continuamente, e precisamente quello di *coppia ordinata*, che indicheremo con (x, y), dove è importante il posto occupato dagli elementi x e y:

$$(x,y)=(x_1,y_1) \Leftrightarrow x=x_1 \wedge y=y_1$$
.

Conviene osservare esplicitamente che, in generale,

$$\{a,b\} = \{b,a\}$$
 mentre $(a,b) \neq (b,a)$.

³Questo paradosso, formulato da Bertrand Russell agli inizi del 1900, è uno dei più importanti della storia della logica. Si può sintetizzare come segue: In un villaggio vi è un solo barbiere, un uomo ben sbarbato, che rade tutti e soli gli uomini del villaggio che non si radono da soli. La domanda che ci poniamo è: il barbiere rade se stesso?

Definizione 2.4 (Prodotto cartesiano). Dati due insiemi A e B si chiama loro prodotto cartesiano, o semplicemente prodotto, l'insieme, indicato con $A \times B$, delle coppie ordinate il cui primo elemento appartiene ad A e il secondo a B:

$$A \times B \stackrel{\text{def}}{=} \{ (a, b) \mid (a \in A) \land (b \in B) \} .$$

È una conseguenza immediata della definizione che $A \times B \neq B \times A$. Nel caso particolare che A = B si scrive anche A^2 in luogo di $A \times A$.

Si possono considerare anche prodotti cartesiani di più di due insiemi (attenzione all'ordine!) e, nel caso del prodotto cartesiano di un insieme per se stesso n volte, si scriverà A^n in luogo di $A \times A \times \cdots \times A$.

2.3 Numeri

Gli "oggetti base" su cui opera la matematica sono i numeri. Gli insiemi numerici che useremo sono i seguenti:

$$\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$$
.

La natura di questo corso non ci consente una trattazione dettagliata delle proprietà di questi insiemi, che riterremo sostanzialmente noti dalla scuola media superiore. Richiameremo solo alcune delle nozioni più significative, cominciando con il "presentare" questi insiemi.

• N è l'insieme dei numeri *naturali* che, come diceva Leopold Kronecker (1823-1891), possono essere considerati un dono di Dio: "Dio fece i numeri naturali; tutto il resto è opera dell'uomo". Per noi l'insieme dei numeri naturali è:

$$\mathbb{N} = \{ 0, 1, 2, \dots, n, \dots \} .$$

L'insieme dei numeri naturali ha un minimo elemento (lo 0) e non ha un massimo elemento. Anche un qualunque sottoinsieme dei numeri naturali ha un minimo elemento.

• \mathbb{Z} (il simbolo usato è legato alla parola tedesca zahl, cioè numero, cifra) è l'insieme dei numeri interi, ovvero, almeno a livello molto intuitivo, dei "numeri naturali con segno" (attenzione però al fatto che +0 = -0 = 0, ovvero al fatto che 0 non ha segno!):

$$\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}$$
.

Proprietà comune ai naturali e agli interi è che ogni numero ha un successivo.

• Q (il simbolo usato è dovuto al fatto che si tratta, sostanzialmente, di quozienti, o rapporti, ratio in latino) è l'insieme dei numeri razionali, ovvero delle frazioni con numeratore e denominatore interi, e denominatore diverso da zero. Per essere precisi, occorre tenere conto che due frazioni che, ridotte ai minimi termini, sono uguali, rappresentano lo stesso numero. Si può anche pensare di attribuire il segno solo al numeratore, ritenendo che il denominatore sia un numero naturale (diverso da zero):

$$\mathbb{Q} = \{ m/n \mid m \in \mathbb{Z}, n \in \mathbb{N}, n \neq 0 \} .$$

I numeri razionali si possono anche scrivere come *numeri decimali*, finiti o periodici. Una delle novità sostanziali dell'insieme dei razionali rispetto a quello degli interi è il fatto che non si può più parlare di *successivo* di un numero, anzi, tra due razionali qualsiasi esiste sempre (almeno) un altro razionale (e quindi infiniti):

se
$$a = \frac{m}{n}$$
 e $b = \frac{p}{q}$, allora il numero $c = \frac{a+b}{2}$ è razionale ed è compreso tra a e b .

• \mathbb{R} è l'insieme dei numeri reali. Un'introduzione rigorosa di questo insieme di numeri esula dagli scopi di questo corso. Possiamo, almeno a livello elementare, pensare a questi numeri come all'insieme di tutti gli interi, le frazioni, i radicali, i numeri come π , ecc. Potremmo anche pensarli come l'insieme di tutti gli allineamenti decimali, finiti, illimitati periodici e illimitati non periodici, anche se questo modo di introdurre i reali si scontra con grosse difficoltà quando si devono eseguire le operazioni (come si possono sommare, o peggio ancora moltiplicare, due allineamenti illimitati, se devo cominciare "all'estrema destra", e tenere conto di tutti i riporti?).

A partire dall'insieme dei naturali, questi insiemi numerici, nell'ordine in cui sono stati presentati, sono via via sempre più grandi, nel senso che

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
.

Comune a tutti questi insiemi è la possibilità di eseguire le operazioni di addizione e moltiplicazione, con proprietà via via sempre più soddisfacenti, come per esempio il fatto che in \mathbb{N} non si può sempre fare la sottrazione, mentre in \mathbb{Z} e successivi si, in \mathbb{Z} non si può sempre fare la divisione, mentre in \mathbb{Q} e \mathbb{R} si (tranne per zero, ovviamente!).

Occasionalmente avremo la necessità di utilizzare anche l'insieme dei numeri complessi, che si indica con \mathbb{C} e che è un soprainsieme dell'insieme dei numeri reali: $\mathbb{R} \subset \mathbb{C}$. Il vantaggio principale di questo insieme numerico è che in esso si può sempre estrarre la radice quadrata, anche dei numeri negativi.

2.4 Intervalli di numeri reali

Alcuni sottoinsiemi dell'insieme dei numeri reali sono particolarmente importanti nell'analisi. Ne consideriamo la definizione e le proprietà in questo paragrafo.

Definizione 2.5. Dati due numeri reali a e b, con a < b, si chiamano intervalli, con la specificazione a fianco segnata, i seguenti sottoinsiemi di \mathbb{R} .

```
a, a
                                   intervallo vuoto
a, b
             \{ x \mid a < x < b \}
                                   intervallo limitato aperto
             \{ x \mid a \leq x \leq b \}
                                   intervallo limitato chiuso
             \{ x \mid a \leq x < b \}
                                   intervallo limitato chiuso a sinistra e aperto a destra
[a,b[
             \{ x \mid a < x \le b \}
[a,b]
                                   intervallo limitato aperto a sinistra e chiuso a destra
a,+\infty
             \{x \mid x > a\}
                                   intervallo superiormente illimitato aperto
             \{ x \mid x \geq a \}
                                   intervallo superiormente illimitato chiuso
[a, +\infty[
           \{ x \mid x < a \}
                                   intervallo inferiormente illimitato aperto
]-\infty,a[
]-\infty,a]
           \{x \mid x \leq a\}
                                   intervallo inferiormente illimitato chiuso
```

I numeri reali a e b, oppure soltanto a o soltanto b, si chiamano estremi dell'intervallo. Gli intervalli limitati si chiamano anche segmenti, quelli illimitati anche semirette.

In sostanza gli intervalli sono caratterizzati dalla proprietà che, se contengono due numeri reali, contengono tutti i numeri compresi tra quei due.

Anche per l'intero insieme \mathbb{R} si usa la scrittura $]-\infty,+\infty[$ e questo intervallo si dice semplicemente illimitato e si considera sia aperto che chiuso.

Nel caso che a=b l'intervallo chiuso [a,a] si riduce solo a un punto e si può chiamare intervallo degenere. A volte anche l'insieme vuoto si considera come un intervallo a cui si dà il nome di intervallo nullo.

Per gli intervalli limitati, al punto

$$x_0 = \frac{a+b}{2}$$

si dà il nome di centro e al numero

$$\delta = b - x_0 = x_0 - a$$

si dà il nome di raggio o semiampiezza. L'intervallo (aperto) di centro x_0 e raggio δ è allora

$$]x_0-\delta, x_0+\delta[.$$

Ogni punto di un intervallo che non coincida con gli (eventuali) estremi si dice interno all'intervallo.

3 Un po' di geometria analitica

In questo capitolo richiamiamo alcuni concetti fondamentali di geometria analitica, concetti che saranno utilizzati nel seguito del corso. In vista dello studio delle funzioni reali di due variabili reali, introdurremo anche alcune idee fondamentali della geometria analitica dello spazio.

3.1 Coordinate cartesiane di punti nel piano e nello spazio

Nello spazio si può introdurre un Sistema di coordinate cartesiane considerando 3 rette non complanari passanti per uno stesso punto O. Tutte le proprietà metriche (cioè quelle che riguardano lunghezze, distanze, ecc.) si esprimono in maniera più semplice se le tre rette sono ortogonali, e in questo caso si parla di coordinate cartesiane ortogonali. Su ciascuna delle tre rette si sceglie un'unità di misura e un verso e, quindi, un sistema di ascisse. Per ragioni di semplicità si sceglie di solito la stessa unità sulle tre rette e allora si parla di sistema cartesiano monometrico. Nel seguito useremo sempre un sistema cartesiano ortogonale e monometrico. Il punto di intersezione delle tre rette si chiama origine del sistema di coordinate. Le tre rette, dette anche assi, si indicano con O_x , O_y , O_z , o, semplicemente con x, y, z, se non ci sono possibilità di equivoci. I piani O_{xy} , O_{xz} , O_{yz} , o, semplicemente, xy, xz, yz, si chiamano piani coordinati. Naturalmente nel piano bastano solo due assi e in questo caso l'asse O_x si chiama anche asse delle ascisse, l'asse O_y asse delle ordinate. Un sistema del tipo detto si indica con Oxy nel piano e con Oxyz nello spazio.

Una volta scelto il sistema Oxyz, ad ogni punto P dello spazio si può far corrispondere una terna di numeri reali (una coppia nel piano), con la costruzione indicata in figura 3.1.

Per indicare le coordinate del punto P si scrive P(x,y,z) (P(x,y) nel piano), o anche, a volte, P=(x,y,z) (P=(x,y) nel piano).

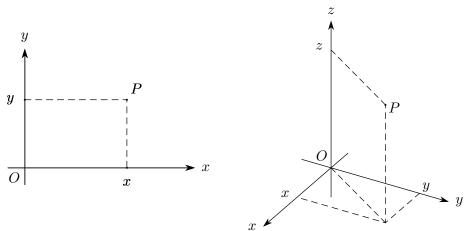


Figura 3.1 Coordinate cartesiane di un punto nel piano e nello spazio

3.2 Le formule fondamentali della geometria analitica del piano

Dati, nel piano riferito al sistema Oxy, due punti $A(x_A, y_A)$ e $B(x_B, y_B)$, la distanza tra i due punti A, B (nell'ipotesi che il sistema di coordinate cartesiane sia ortogonale e monometrico) è data da

(3.1)
$$\overline{AB} = d(A, B) = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}.$$

Nel seguito useremo indifferentemente le due notazioni indicate, \overline{AB} e d(A, B), per la distanza tra due punti.

Poiché questa formula è legata all'applicazione del teorema di Pitagora, la ortogonalità del sistema di coordinate è essenziale. Lo si può agevolmente controllare con riferimento alla figura 3.2.

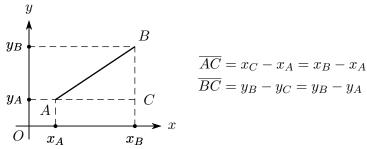


Figura 3.2 Distanza tra due punti e teorema di Pitagora

Le coordinate del punto medio M del segmento AB sono invece date dalla media delle coordinate degli estremi:

(3.2)
$$x_M = \frac{x_A + x_B}{2}, \quad y_M = \frac{y_A + y_B}{2}.$$

Tra le formule fondamentali riportiamo anche quella del baricentro G di un triangolo di vertici $A(x_A, y_A)$, $B(x_B, y_B)$, $C(x_C, y_C)$, che è sempre dato dalla media delle coordinate degli estremi:

(3.3)
$$x_G = \frac{x_A + x_B + x_C}{3}, \quad y_M = \frac{y_A + y_B + y_C}{3}.$$

3.3 La retta nel piano cartesiano

L'equazione generale di una retta nel piano cartesiano è

$$(3.4) ax + by + c = 0$$

dove i numeri a e b (coefficienti di x e y) non possono essere contemporaneamente nulli. Per disegnare la retta è sufficiente trovare due punti cioè due soluzioni dell'equazione.

Esempio 3.1. Rappresentare graficamente la seguente retta: 3x + 2y - 6 = 0. Ponendo successivamente, per esempio, x = 0 e poi y = 0 si trova, rispettivamente, y = 3 e x = 2. Dunque la retta passa per i punti (0,3) e (2,0). Il grafico è il seguente.

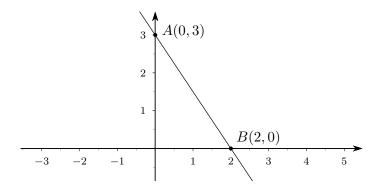


Figura 3.3 *Retta* 3x + 2y - 6 = 0

Se $b \neq 0$ l'equazione si può trasformare nella forma

$$y = -\frac{a}{b}x - \frac{c}{b},$$

che di solito si scrive

$$(3.5) y = mx + q.$$

Il numero m si chiama coefficiente angolare o pendenza della retta, il numero q ordinata all'origine. Per esempio la retta della figura 3.3 si può scrivere nella forma

$$y = -\frac{3}{2}x + 2\,,$$

con m=-3/2 e q=2. Si può osservare che

(3.6)
$$m = \frac{y_B - y_A}{x_B - x_A},$$

e la stessa proprietà vale se si prendono due altri punti qualunque della retta. Questo rende evidente il perché del nome coefficiente angolare: si tratta del rapporto tra lo spostamento verticale e quello orizzontale quando ci si muove da un punto all'altro della retta. È evidente che se m>0 la retta è "in salita", se m<0 "in discesa", se m=0 è orizzontale. Il motivo del nome ordinata all'origine per il numero q=2 risulta evidente dalla figura 3.3. La formula (3.6) si usa di solito scrivere

$$(3.7) m = \frac{\Delta y}{\Delta x}.$$

In sostanza la differenza $y_B - y_A$ si indica con Δy (leggi "delta y"), la differenza $x_B - x_A$ si indica con Δx (leggi "delta x"). Questa è una notazione molto importante e di uso comune: se si ha una qualunque grandezza, g, variabile, la differenza tra due valori della grandezza si chiama variazione e si indica con Δg . Se Δg è positiva si parla di incremento, se Δg è negativa si parla di decremento. Per esempio se il guadagno g della mia impresa nel 2008 è stato di 150.000 \$ e nel 2009 di 180000 \$, si ha $\Delta g = 30000$ \$, cioè un incremento di 30000 \$ di guadagno, in un anno.

Le rette verticali sono caratterizzate dall'avere b=0 e quindi equazioni del tipo x=k, quelle orizzontali dall'avere m=0 e quindi equazioni del tipo y=k.

Tenendo conto del significato geometrico del coefficiente angolare possiamo concludere che due rette non verticali sono parallele se e solo se hanno lo stesso coefficiente angolare, mentre si dimostra che due rette, non verticali né orizzontali, sono perpendicolari se e solo se il prodotto dei loro coefficienti angolari è -1, ovvero se il coefficiente angolare di una è il reciproco cambiato di segno di quello dell'altra.

Per trovare l'equazione di una retta si possono presentare le seguenti due situazioni.

1. Retta per un punto e di pendenza nota: se $P(x_P, y_P)$ è il punto e m è il coefficiente angolare che indica la pendenza, l'equazione richiesta è:

$$(3.8) y - y_P = m(x - x_P).$$

2. Retta per due punti: se $A(x_A, y_A)$ e $B(x_B, y_B)$ sono i due punti, l'equazione richiesta⁽¹⁾ è:

$$(3.9) (x - x_A)(y_B - y_A) = (y - y_A)(x_B - x_A).$$

Esempio 3.2. Trovare la retta s passante per (1,2) e parallela alla retta r: 2x - y + 5 = 0.

Scrivendo la retta r nella forma y = 2x - 5 se ne valuta subito il coefficiente angolare, m = 2. L'equazione richiesta è allora: y - 2 = 2(x - 1), che si può semplificare in 2x - y = 0.

Esempio 3.3. Trovare la retta s passante per (2,1) e perpendicolare alla retta r: x-2y-1=0.

Si ha: r: y = 1/2 x - 1/2. Dunque il coefficiente angolare della retta r è 1/2 e quindi quello della retta s sarà -2 (il reciproco cambiato di segno). L'equazione richiesta sarà dunque: y - 1 = -2(x - 2), che si semplifica in 2x + y - 5 = 0.

Esempio 3.4. Trovare la retta passante per (2,3) e (4,-1).

Applicando la formula soprascritta si trova subito: (x-2)(-1-3) = (y-3)(4-2), che si semplifica in 2x + y - 7 = 0.

3.4 La parabola nel piano cartesiano

3.4.1 Parabola con asse verticale

Una parabola con asse verticale ha equazione

$$(3.10) y = ax^2 + bx + c, a \neq 0,$$

ed ha le seguenti caratteristiche fondamentali.

- Se a > 0 volge la concavità verso l'alto; se a < 0 volge la concavità verso il basso.
- ullet Il vertice V ha ascissa

(3.11)
$$x_V = -\frac{b}{2a} \,.$$

• L'ordinata del vertice si può trovare direttamente sostituendo l'ascissa nell'equazione della parabola.

3.4.2 Parabola con asse orizzontale

Una parabola con asse orizzontale ha equazione

ed ha le seguenti caratteristiche fondamentali.

- Se a > 0 volge la concavità verso destra; se a < 0 volge la concavità verso sinistra.
- \bullet Il vertice V ha ordinata

¹Conviene usare la forma che proponiamo qui, anziché quella sotto forma di frazione, comunemente proposta nei testi, in quanto quella forma *non* si applica né alle rette verticali né a quelle orizzontali, mentre la forma dell'equazione (3.9) va bene sempre.

(3.13)
$$y_V = -\frac{b}{2a} \,.$$

• L'ascissa del vertice si può trovare direttamente sostituendo l'ascissa nell'equazione della parabola.

Per tracciare correttamente una parabola occorre valutare il segno di a, determinare il vertice e successivamente almeno qualche altro punto, preferibilmente le intersezioni con gli assi (se ci sono). Vediamo qualche esempio.

Esempio 3.5. $y=2x^2-x-1$. La concavità è verso l'alto, il vertice ha ascissa $^{1}/_{4}$ e, quindi, ordinata $^{-9}/_{8}$. L'intersezione con l'asse delle y si ottiene ponendo x=0, da cui y=-1. Le intersezioni con l'asse delle x si ottengono ponendo y=0, da cui $x_1=^{-1}/_{2}$, $x_2=1$ (ottenute con la formula risolutiva delle equazioni di secondo grado). A questo punto il tracciamento del grafico è facile e si ottiene:

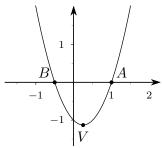


Figura 3.4 Parabola di equazione $y = 2x^2 - x - 1$

Esempio 3.6. $x = y^2 - 2y + 2$. La concavità è verso destra, il vertice ha ordinata 1 e, quindi, ascissa 1. L'intersezione con l'asse delle x si ottiene ponendo y = 0, da cui x = 2. Per trovare le intersezioni con l'asse delle y bisogna porre x = 0, ma l'equazione risultante non ha soluzioni (ha il $\Delta < 0$). Troviamo allora qualche altro punto, per esempio se y = 2, x = 2, mentre se y = -1, x = 5. A questo punto il tracciamento del grafico è semplice e si ottiene:

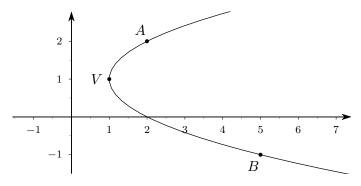


Figura 3.5 Parabola di equazione $x = y^2 - 2y + 2$

3.5 La circonferenza nel piano cartesiano

L'equazione generica di una circonferenza nel piano cartesiano è

$$(3.14) x^2 + y^2 + ax + by + c = 0,$$

con la condizione che

$$(3.15) a^2 + b^2 - 4c \ge 0.$$

Se la condizione (3.15) non è verificata l'equazione (3.14) non ha alcuna soluzione. Se invece la condizione (3.15) è verificata la relativa circonferenza ha centro nel punto

$$(3.16) C\left(-\frac{a}{2}, -\frac{b}{2}\right),$$

e raggio dato dalla formula

(3.17)
$$r = \sqrt{\frac{a^2}{4} + \frac{b^2}{4} - c} = \sqrt{\frac{a^2 + b^2 - 4c}{4}},$$

dunque se $a^2 + b^2 - 4c > 0$ si tratta di una circonferenza vera e propria, se invece $a^2 + b^2 - 4c = 0$ si tratta di una circonferenza di raggio nullo, cioè "degenerata" in un punto.

Si presti particolare attenzione al fatto che, nell'equazione (3.14), detta forma cononica, i coefficienti di x^2 e y^2 devono essere così uguali a 1. Se essi fossero uguali tra di loro ma diversi da 1, bisognerebbe prima ridursi alla forma canonica; se essi fossero diversi tra di loro non si tratterebbe di una circonferenza.

L'equazione (3.14) della circonferenza si può scrivere in una maniera molto utile, se si conoscono il centro e il raggio:

$$(3.18) (x - x_C)^2 + (y - y_C)^2 = r^2.$$

Esempio 3.7. $x^2 + y^2 - 2x + 4y = 0$: circonferenza con centro in C(1, -2) e raggio $r = \sqrt{5}$. L'equazione si può scrivere nella forma $(x - 1)^2 + (y + 2)^2 = 5$.

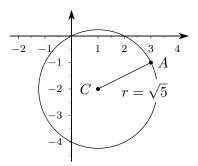


Figura 3.6 Circonferenza di equazione $x^2 + y^2 - 2x + 4y = 0$

Esempio 3.8. $x^2 + y^2 - x - 3y + 5 = 0$: poiché $(-1)^2 + (-3)^2 - 4 \cdot 5 < 0$, l'equazione non ha alcuna soluzione.

Esempio 3.9. $x^2 + y^2 - 2x - 4y + 5 = 0$: poiché $(-2)^2 + (-4)^2 - 4 \cdot 5 = 0$, si tratta di una circonferenza degenere, cioè ridotta a un solo punto, il suo centro, precisamente C(1,2).

Esempio 3.10. $4x^2 + 4y^2 - 16x - 8y + 19 = 0$: innanzitutto osserviamo che i coefficienti di x^2 e y^2 sono uguali; per ottenere la forma canonica prevista dividiamo ambo i membri per 4, ottenendo

$$x^2 + y^2 - 4x - 2y + \frac{19}{4} = 0.$$

A questo punto osserviamo che $a^2 + b^2 - 4c = 16 + 4 - 19 = 1 > 0$. Dunque l'equazione proposta ha come grafico una circonferenza di centro C(2,1) e raggio r = 1/2. Il grafico è riportato nella figura 3.7.

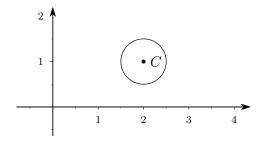


Figura 3.7 *Grafico dell'equazione* $4x^2 + 4y^2 - 16x - 8y + 19 = 0$

4 Equazioni

4.1 Equazioni lineari in una o due incognite

La più generale equazione lineare (cioè di primo grado) in un'incognita è del tipo

$$(4.1) ax = b , a \neq 0.$$

Essa ammette sempre una e una sola soluzione⁽¹⁾:

$$(4.2) x = -\frac{b}{a}.$$

Se si prescinde dalla condizione $a \neq 0$, occorre distinguere tre casi nella valutazione delle soluzioni di un'equazione come quella considerata, e precisamente:

- $a \neq 0$: l'equazione ha, come già detto, solo la soluzione b/a;
- $a = 0 \land b \neq 0$: l'equazione non ha alcuna soluzione;
- $a = 0 \land b = 0$: l'equazione ammette infinite soluzioni (tutti i numeri reali).

È molto importante tenere conto dell'osservazione contenuta nelle righe precedenti, in particolare nella risoluzione di equazioni parametriche. Chiariamo il concetto con un esempio.

Esempio 4.1. Discutere ed eventualmente risolvere l'equazione seguente:

$$(a^2 - 1)x = a + 1$$
.

Tenendo conto di quanto detto si conclude che:

- se $a \neq \pm 1$, l'equazione ha la sola soluzione $x = (a+1)/(a^2-1) = 1/(a-1)$;
- se a = -1, l'equazione ha come soluzioni tutti i numeri reali;
- se a = 1, l'equazione non ha soluzioni.

La più generale equazione lineare in due incognite è del tipo

(4.3)
$$ax + by = c$$
 , $(a, b) \neq (0, 0)$.

La condizione sui parametri a e b si può leggere dicendo che essi non sono mai contemporaneamente nulli. Un'equazione come questa ha sempre infinite soluzioni: si tratta di tutte le coppie che si ottengono attribuendo ad una della due incognite un valore arbitrario e ricavando l'altra dall'equazione in una incognita rimanente (purchè il coefficiente di quest'altra incognita sia diverso da zero).

Per esempio l'equazione

$$2x + 3y = 1$$

ha come soluzioni le coppie $(0, \frac{1}{3})$, $(\frac{1}{2}, 0)$, (-1, 1), ecc.

L'equazione, pensata in due incognite, con coefficiente della y uguale a 0,

$$3x = 1$$
, ovvero $3x + 0y = 1$,

ha come soluzioni le coppie (1/3, 1), (1/3, 2), (1/3, -5), ecc.

 $^{^{1}}$ Un importante teorema (Teorema fondamentale dell'algebra) ha come conseguenza che un'equazione di grado n ha, nell'insieme dei numeri reali, al massimo n soluzioni. Un'equazione del tipo 4.1 ha sempre esattamente una soluzione (come il suo grado), equazioni di grado superiore possono avere anche meno soluzioni di quanto indichi il grado (come si può vedere per esempio nelle equazioni di secondo grado).

4.2 Equazioni di secondo grado in una incognita

La più generale equazione di secondo grado in una incognita è del tipo

$$(4.4) ax^2 + bx + c = 0, a \neq 0.$$

Per risolvere questa equazione si può ricorrere alla nota formula

(4.5)
$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

che fornisce

- 2 soluzioni distinte se la quantità $\Delta = b^2 4ac$ (detta discriminante o semplicemente Delta) è maggiore di zero;
- 1 sola soluzione (si usa anche dire due soluzioni coincidenti oppure una soluzione doppia) se $\Delta = 0$;
- nessuna soluzione nell'insieme dei numeri reali se $\Delta < 0$. In quest'ultimo caso l'equazione ha 2 soluzioni nell'insieme dei numeri complessi, ma non saremo interessati a valutarle.

Esempi.

•
$$2x^2 - 3x - 5 = 0$$
 \implies $x_{1,2} = \frac{3 \pm \sqrt{9 - 4 \cdot 2(-5)}}{2 \cdot 2} = \frac{3 \pm \sqrt{49}}{4} = \begin{pmatrix} 5/2 \\ -1 \end{pmatrix}$

•
$$x^2 - 6x + 9 = 0$$
 \implies $x_{1,2} = \frac{6 \pm \sqrt{36 - 4 \cdot 9}}{2} = 3$

• $x^2 - 2x + 2 = 0$ \Longrightarrow nessuna soluzione perché $\Delta = 4 - 4 \cdot 2 < 0$.

4.3 Qualche equazione di grado superiore

Esistono formule risolutive per le equazioni di terzo e quarto grado (formule che usano i numeri complessi), ma non saremo interessati a considerarle. Non esistono invece formule risolutive per equazioni dal quinto grado in su. Noi ci limiteremo a considerare solo due casi molto semplici.

4.3.1 Equazioni di tipo elementare

Sono quelle del tipo

$$(4.6) ax^n + b = 0, a \neq 0.$$

Esse si risolvono portando b a secondo membro, dividendo per a e successivamente estraendo la radice n-esima, tenendo conto delle differenze tra il caso di n pari e di n dispari, come mostrano gli esempi che seguono.

Esempio 4.2.
$$2x^3 + 54 = 0 \implies x^3 = -27 \implies x = -3$$
.

Esempio 4.3.
$$3x^3 - 12 = 0 \implies x^3 = 4 \implies x = \sqrt[3]{4}$$
.

Esempio 4.4.
$$2x^4 + 15 = 0 \implies x^4 = -\frac{15}{2} \implies$$
 nessuna soluzione.

Esempio 4.5.
$$3x^4 - 14 = 0 \implies x^4 = \frac{14}{3} \implies x = \pm \sqrt[4]{\frac{14}{3}}.$$

4.3.2 Equazioni scomponibili in fattori

Per risolvere le altre equazioni di grado superiore al secondo consideriamo solo la seguente strategia: portare tutto a primo membro, scrivendo l'equazione nella forma standard

$$f(x) = 0;$$

scomporre (se possibile!) f(x) nel prodotto di fattori di primo e secondo grado e successivamente applicare la Legge dell'annullamento del prodotto:

Teorema 4.1 (Legge dell'annullamento del prodotto). Un prodotto di due o più fattori è uguale a zero se e solo se almeno uno dei fattori è uguale a zero.

Per capire praticamente come procedere, ragioniamo su alcuni esempi.

Esempio 4.6.
$$x^3 - x^2 = 0 \implies x^2(x-1) = 0 \implies x^2 = 0 \lor x - 1 = 0 \implies x = 0 \lor x = 1.$$

Esempio 4.7. $x^3 - 1 = 0 \implies (x - 1)(x^2 + x + 1) = 0 \implies x = 1$ solamente, in quanto l'equazione $x^2 + x + 1 = 0$ non ha soluzioni $(\Delta < 0)$.

Esempio 4.8.
$$x^4-1=0 \implies (x^2-1)(x^2+1)=0 \implies (x-1)(x+1)(x^2+1)=0 \implies x=\pm 1$$
. (Anche qui l'equazione $x^2+1=0$ non ha soluzioni).

4.4 Equazioni con radicali

Le equazioni contenenti radicali sono di norma molto difficili da risolvere e non esiste una tecnica standard per trattarle. Ci occuperemo solo di un caso molto semplice, precisamente le equazioni contenenti un solo radicale, normalmente quadratico o, al massimo, cubico.

L'dea base è quella di *isolare il radicale* lasciandolo a primo membro, preferibilmente preceduto dal segno +, e portando tutto il resto a secondo membro; successivamente si *elevano ambo i membri al quadrato o al cubo*, riducendosi così a una equazione non contenente radicali. Purtroppo l'elevazione al quadrato può comportare l'aggiunta di soluzioni estranee: occorrerà dunque, a posteriori, una verifica dell'accettabilità delle soluzioni trovate. Nessun problema invece nel caso di elevazione al cubo. Si vedano gli esempi che seguono per chiarire il metodo.

Esempio 4.9.
$$\sqrt{x+2} + x = 0$$
, $\sqrt{x+2} = -x$, $x+2 = x^2$, $x^2 - x - 2 = 0$,

$$x_{1,2} = \frac{1 \pm \sqrt{1+8}}{2} = \left\langle \begin{array}{c} -1 \\ 2 \end{array} \right. \text{, e si verifica subito che solo la soluzione } x = -1 \text{ è accettabile.}$$

Esempio 4.10.
$$\sqrt{x+2} - x = 0$$
, $\sqrt{x+2} = x$, $x+2 = x^2$, $x^2 - x - 2 = 0$,

$$x_{1,2} = \frac{1 \pm \sqrt{1+8}}{2} = \left\langle \begin{array}{c} -1 \\ 2 \end{array} \right.$$
, e si verifica subito che solo la soluzione $x=2$ è accettabile.

Esempio 4.11. $\sqrt{1+x^2} = x+2$, $1+x^2 = (x+2)^2$, 4x+3=0, x=-3/4, soluzione accettabile.

Esempio 4.12.
$$\sqrt{2x^2 + 1} = 1 - x$$
, $2x^2 + 1 = (x + 2)^2$, $2x^2 + 1 = 1 - 2x + x^2$, $x^2 + 2x = 0$, $x_1 = -2, x_2 = 0$, entrambe soluzioni accettabili.

Esempio 4.13.
$$\sqrt[3]{x^2 - x - 1} = x - 1$$
, $x^2 - x - 1 = x^3 - 3x^2 + 3x - 1$, $x^3 - 4x^2 + 4x = 0$, $x(x^2 - 4x + 4) = 0$,

 $x=0 \vee x=2,$ entrambe accettabili.

4.5 Sistemi di equazioni lineari in due incognite

Un sistema di equazioni consiste nella determinazione delle soluzioni comuni a due (o più) equazioni. Consideriamo, ed è il caso che ci interessa, un sistema di due equazioni lineari (cioè di primo grado) in due incognite:

$$\begin{cases}
ax + by = p \\
cx + dy = q
\end{cases}$$

Anche il sistema di equazioni ha un grado che si ottiene facendo il prodotto dei gradi delle due equazioni: in questo caso si hanno due equazioni di primo grado e quindi il sistema è anch'esso di primo grado.

Si dice soluzione del sistema una coppia di reali che sia soluzione comune della prima e della seconda equazione. Un sistema come quello proposto può avere:

- una sola soluzione (e allora si dice determinato);
- infinite soluzioni (e allora si dice indeterminato);
- nessuna soluzione (e allora si dice *incompatibile*, anche se di solito si usa il termine *impos*sibile).

I sistemi che hanno soluzioni (una o infinite) si dicono genericamente compatibili.

Consideriamo alcuni esempi.

- $\begin{cases} 2x+y=1 \\ x-y=2 \end{cases} : \text{ il sistema è compatibile e determinato, e ha come unica soluzione la coppia } (1,-1).$ $\begin{cases} x-2y=1 \\ 2x-4y=2 \end{cases} : \text{ il sistema è compatibile e indeterminato, e ha come soluzioni tutte le }$
- coppie $(2t+1,t) \, \forall t \in \mathbb{R}$. $\begin{cases} x-2y=1 \\ 2x-4y=3 \end{cases}$: il sistema è incompatibile.

La risoluzione di un sistema lineare di due equazioni in due incognite può avvenire in maniera elementare usando il cosiddetto metodo di sostituzione: si ricava un'incognita in una delle due equazioni e la si sostituisce nell'altra, ottenendo un'equazione in una sola incognita, facilmente risolubile; a questo punto il gioco è fatto. Per completezza riporto i calcoli necessari a risolvere il primo dei sistemi appena visti.

$$\begin{cases} 2x + y = 1 \\ x - y = 2 \end{cases}, \quad \begin{cases} y = 1 - 2x \\ x - y = 2 \end{cases}, \quad \begin{cases} y = 1 - 2x \\ x - (1 - 2x) = 2 \end{cases}, \quad \begin{cases} y = 1 - 2x \\ x = 1 \end{cases}, \quad \begin{cases} y = -1 \\ x = 1 \end{cases}.$$

4.6 Risoluzione grafica di sistemi in due incognite

La rappresentazione di rette, parabole e circonferenze rende possibile una interpretazione grafica molto significativa della risoluzione di sistemi di equazioni (di primo o secondo grado) in due incognite: se si rappresentano graficamente le curve relative a ciascuna equazione del sistema, le soluzioni del sistema corrisponderanno ai punti di intersezione di queste curve, rendendo anche evidente il motivo per cui a volte si hanno soluzioni e a volte no. Vediamo la cosa su alcuni esempi.

Esempio 4.14.
$$\begin{cases} 2x + y = 1 \\ x - 2y = 3 \end{cases}$$

Procedendo con la tecnica di sostituzione già nota, si trova l'unica soluzione (1, -1). Se si rappresentano graficamente le due rette che corrispondono alle equazioni del sistema, si vede che esse hanno un unico punto di intersezione, (1, -1) appunto.

 $\overline{22}$ Luciano Battaia

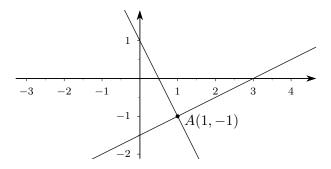


Figura 4.1 Risoluzione grafica di un sistema di equazioni

Esempio 4.15.
$$\begin{cases} 2x + y = 1 \\ 4x + 2y = 5 \end{cases}$$

Questa volta il sistema non ha soluzioni e il tutto corrisponde al fatto che le due rette che corrispondono alle due equazioni del sistema sono parallele, come mostra la figura 4.2.

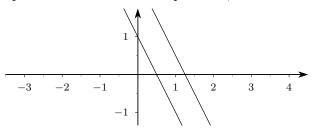


Figura 4.2 Sistema di equazioni senza soluzioni

Esempio 4.16.
$$\begin{cases} 2x - y = 1 \\ 2x^2 + 2y^2 - 8x + 3y + 1 = 0 \end{cases}$$

Questa volta il sistema ha come soluzioni (0, -1) e (1, 1) e il tutto trova conferma nelle intersezioni tra la retta e le circonferenza corrispondenti alle due equazioni del sistema, come mostra la figura 4.3.

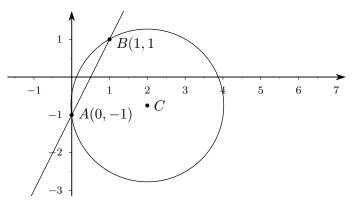


Figura 4.3 Un sistema di secondo grado

Esempio 4.17.
$$\begin{cases} 4x + 3y = 10 \\ x^2 + y^2 = 4 \end{cases}$$

Questa volta il sistema ha come unica soluzione (8/5, 6/5) e il tutto trova conferma nel fatto che la retta e la circonferenza corrispondenti alle due equazioni del sistema sono tra di loro tangenti, come mostra la figura 4.4.

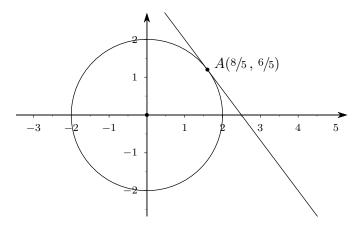


Figura 4.4 Sistema di secondo grado con una sola soluzione

5 Disequazioni

Una disequazione è una espressione del tipo

$$f(x) \leq g(x)$$
 (cioè $f(x) < g(x) \lor f(x) \leq g(x) \lor f(x) > g(x) \lor f(x) \geq g(x)$),

nel caso di un'incognita, oppure del tipo

$$f(x,y) \leqslant g(x,y) \quad \text{(cioè } f(x,y) < g(x,y) \lor f(x,y) \leq g(x,y) \lor f(x,y) < g(x,y) \lor f(x,y) \geq g(x,y)),$$

nel caso di due incognite.

Risolvere una disequazione significa trovare tutti i numeri, o tutte le coppie di numeri, che rendono vera la disuguaglianza.

Esempi.

- $3x^2 2x > 1$: il numero 2 è soluzione, il numero 0 non è soluzione.
- $x^2 2y^2 \ge x + y$: la coppia (2,0) è soluzione, la coppia (2,1) non è soluzione.

È importante notare subito che, nel caso di disequazioni in una incognita, di solito, si hanno infinite soluzioni, al contrario delle equazioni che, sempre di solito, hanno un numero finito di soluzioni. L'insieme di tutte le soluzioni si riesce normalmente a rappresentare in maniera semplice utilizzando i sottoinsiemi di numeri reali di cui abbiamo parlato nel capitolo 2, al paragrafo 2.4. Molto convenienti, come vedremo, sono le rappresentazioni grafiche.

Nel caso di disequazioni in due incognite la rappresentazione grafica diventa praticamente indispensabile, in quanto non è di solito possibile esprimere analiticamente in maniera semplice l'insieme delle soluzioni.

5.1 Disequazioni di primo grado

5.1.1 Il caso di un'incognita

Una disequazione di primo grado in un'incognita si può sempre ridurre a una delle forme

$$(5.1) ax + b > 0, ax + b > 0, ax + b < 0, ax + b < 0.$$

Conviene sempre ridursi al caso in cui a > 0, eventualmente cambiando il segno ad ambo i membri, ⁽¹⁾ dopodiché si procede portando b a secondo membro e dividendo per a.

Esempio 5.1. $3x + 2 \le 0$: $3x \le -2$, $x \le -2/3$, ovvero $x \in]-\infty, -2/3]$, insieme che si rappresenta graficamente come nella figura seguente.

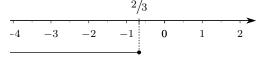


Figura 5.1 *La disequazione* $3x + 2 \le 0$

¹Attenzione: cambiando il segno è *obbligatorio* cambiare anche il verso della disequazione

Esempio 5.2. 2x + 8 < 7x - 1: -5x < -9, 5x > 9, x > 9/5, ovvero $x \in]9/5, +\infty[$, insieme che si rappresenta graficamente come nella figura seguente.



Figura 5.2 La disequazione 2x + 8 < 7x - 1

Esempio 5.3. Si noti come nel primo caso il punto -2/3 era compreso nell'insieme delle soluzioni, nel secondo caso invece il punto 9/5 non è compreso: è opportuno abituarsi a evidenziare questa differenza anche nel grafico, per esempio usando un "pallino pieno" nel primo caso come abbiamo fatto noi. (2)

5.1.2 Il caso di due incognite

Una disequazione di primo grado in due incognite si può sempre porre in una delle forme

$$(5.2) ax + by + c > 0, ax + by + c \ge 0, ax + by + c < 0, ax + by + c \le 0.$$

Se teniamo conto che ax + by + c = 0 ha come grafico una retta nel piano, e che una retta divide il piano in due semipiani, potremo concludere che una disequazione di primo grado in due incognite ha come soluzioni tutti i punti di uno dei due semipiani, comprendenti o meno la retta origine, a seconda della presenza o no del segno di = nella disequazione. Per sapere quale dei due semipiani scegliere, conviene considerare un punto in uno dei due (fuori dalla retta origine dunque) e controllare numericamente se la disequazione è verificata per quel punto.

Esempio 5.4. 2x - y + 1 > 0. Si rappresenta graficamente la retta 2x - y + 1 = 0. Si prende poi il punto (0,0), che non sta sulla retta: sostituendo le sue coordinate nella disequazione si vede subito che esse la soddisfano, dunque la disequazione è verificata da tutti i punti che stanno nello stesso semipiano di O, esclusa la retta origine.

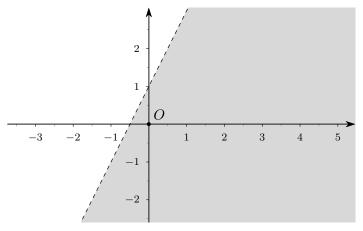


Figura 5.3 La disequazione 2x - y + 1 > 0

Esempio 5.5. $2x+y+1 \ge 0$. Procedendo come prima si trova l'insieme di soluzioni rappresentato in figura 5.4.

²È ovvio che ciascuno può utilizzare il tipo di visualizzazione che preferisce, o a cui è stato abituato: l'importante è essere chiari e coerenti.

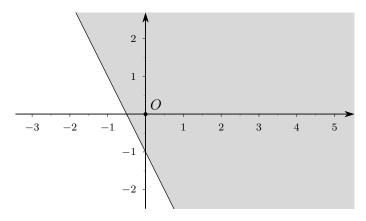


Figura 5.4 La disequazione $2x + y + 1 \ge 0$

5.2 Disequazioni di secondo grado

5.2.1 Il caso di un'incognita

Una disequazione di secondo grado in un'incognita si può sempre mettere in una delle forme sintetizzate nella formula seguente:

$$(5.3) ax^2 + bx + c \leq 0.$$

Il modo migliore per risolverla è quello di considerare la parabola $y = ax^2 + bx + c$ e poi valutare dal grafico quali sono le x che corrispondono alle parti di parabola che stanno sopra o sotto l'asse delle ascisse, a seconda del verso della disequazione. Gli esempi che seguono chiariranno il metodo. (3)

Esempio 5.6. $2x^2-x-1\geq 0$. Il grafico di figura 5.5 rende evidente che le soluzioni sono $x\leq -1/2$ oppure $x\geq 1$, ovvero

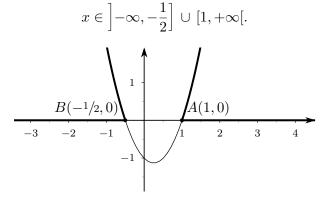


Figura 5.5 La disequazione $2x^2 - x - 1 \ge 0$

Questo insieme di soluzioni può essere rappresentato graficamente come segue, e come si deduce subito dalla figura 5.5 stessa.

 $^{^3}$ Ci sono anche delle regole legate al segno di a e al tipo di discriminante dell'equazione $ax^2 + bx + c = 0$, detta equazione associata alla disequazione. Purtroppo la memorizzazione di queste regole avviene quasi sempre in maniera scorretta, con conseguenti errori nella risoluzione. A nostro avviso la tecnica grafica è di gran lunga preferibile.

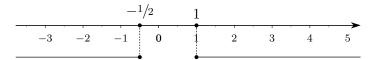


Figura 5.6 Le soluzioni della disequazione $2x^2 - x - 1 \ge 0$

Esempio 5.7. $-2x^2 + x - 1 \ge 0$. Il grafico di figura 5.7 rende evidente che la disequazione non ha nessuna soluzione. Si noti come invece le disequazioni $-2x^2 + x - 1 \le 0$ e $-2x^2 + x - 1 < 0$ avrebbero avuto come insieme delle soluzioni tutti i numeri reali.

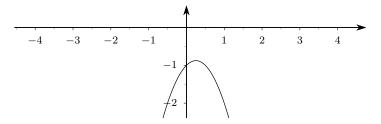


Figura 5.7 La disequazione $2x^2 + x - 1 \ge 0$.

Esempio 5.8. $x^2 + 2x + 1 \le 0$ Dal grafico di figura 5.8 si deduce facilmente che la disequazione è verificata solo per x = -1: il trinomio $x^2 + 2x + 1$ non è infatti mai negativo e può essere nullo solo in corrispondenza di x = -1.

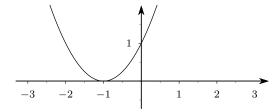


Figura 5.8 La disequazione $x^2 + 2x + 1 \le 0$

5.2.2 Il caso di due incognite

La situazione è molto simile a quanto già visto per il caso delle equazioni di primo grado: rappresentata nel piano cartesiano la parabola, circonferenza, ellisse o iperbole corrispondente alla equazione in due incognite associata alla disequazione, si constata che il piano viene diviso in due regioni (sono, solo in apparenza, tre nel caso dell'iperbole). In una delle due regioni la disequazione è verificata, nell'altra no, e la ricerca della regione giusta si fa scegliendo un punto e controllando numericamente se in corrispondenza ad esso la disequazione è verificata o meno.

Esempio 5.9. $x^2+y^2-2x-2y+1 \le 0$. Si traccia la circonferenza di equazione $x^2+y^2-2x-2y+1 = 0$; successivamente si controlla che sostituendo le coordinate di un punto interno (per esempio il centro, (1,1), che sicuramente è interno) la disequazione è verificata. La disequazione sarà dunque verificata per tutti gli altri punti interni e per la circonferenza stessa, visto che la disequazione è del tipo " \le ".

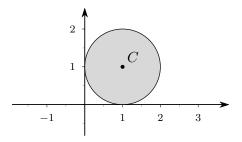


Figura 5.9 *La disequazione* $x^2 + y^2 - 2x - 2y + 1 \le 0$

5.3 Sistemi di disequazioni

Esattamente come nel caso dei sistemi di equazioni, risolvere un sistema di disequazioni significa trovare le soluzioni comuni. Poiché, a differenza delle equazioni, le soluzioni di una disequazione sono normalmente infinite, sarà generalmente più complesso trovare le soluzioni comuni, e le rappresentazioni grafiche potranno essere di grande aiuto.

5.3.1 Sistemi in una incognita

Esempio 5.10.
$$\begin{cases} 2x - 1 \le 0 \\ x^2 - 5x + 4 > 0 \end{cases}$$
.

Si risolvono separatamente le due disequazioni ottenendo $x \le 1/2$ per la prima e $x < 1 \lor x > 4$ per la seconda. A questo punto si costruisce un grafico come nella figura 5.10, dal quale è facile dedurre che le soluzioni del sistema sono costituite dall'insieme

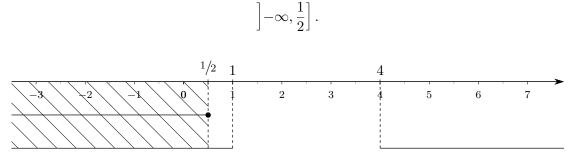


Figura 5.10 Grafico per un sistema di disequazioni in una incognita

5.3.2 Sistemi in due incognite

Per i sistemi in due incognite si procede in maniera simile, rappresentando nel piano cartesiano l'insieme delle soluzioni di ciascuna delle disequazioni e poi trovando le parti comuni. Come già per le equazioni non sarà possibile in generale esplicitare analiticamente l'insieme delle soluzioni: la soluzione grafica sarà essenziale.

Esempio 5.11.
$$\begin{cases} x^2 + y^2 - 2x > 0 \\ x - y - 2 > 0 \end{cases}$$
.

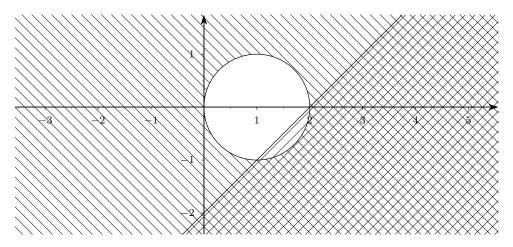


Figura 5.11 Grafico per un sistema di disequazioni in due incognite

L'insieme delle soluzioni è costituito dalla parte di piano dove si incrociano i due riempimenti obliqui, con l'esclusione sia dell'arco di circonferenza che delle due parti di retta.

5.4 Disequazioni scomponibili in fattori

Supponiamo di avere una disequazione (in una o due incognite) ridotta a forma normale, cioè del tipo

$$f(x) \leq 0, \quad f(x,y) \leq 0.$$

Se il primo membro non è di uno dei tipi già visti (cioè di primo e secondo grado) si può provare a scomporre in fattori e poi utilizzare la regola dei segni per risolvere la disequazione. La stessa tecnica si applica se si hanno disequazioni fratte. Precisamente si determina il segno di ciascuno dei fattori (insieme di positività, insieme di negatività, insieme dei punti ove si annulla) e poi si determina il segno del prodotto (o del quoziente). Per facilitare le conclusioni conviene utilizzare opportune rappresentazioni grafiche, in particolare nel caso di disequazioni in una incognita, come si vedrà sugli esempi.

Esempio 5.12. $(x^2-1)(x-2) > 0$. Rappresentando graficamente la parabola $y=x^2-1$ si verifica subito che il fattore x^2-1 è positivo per x<-1 e per x>1, è negativo per -1< x<1, si annulla per $x=\pm 1$. Per il fattore x-2 è facile concludere che è positivo per x>2, negativo per x<2, si annulla per x=2. Se si costruisce con questi dati il grafico della figura 5.12, si può concludere facilmente.

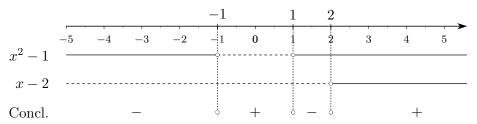


Figura 5.12 Grafico di segno per la diseguazione $(x^2-1)(x+2)$

Si noti che abbiamo usato

- una linea continua per indicare le parti dove ciascun fattore è positivo;
- una linea tratteggiata per indicare le parti dove ciascun fattore è negativo;
- uno 0 per indicare i punti dove ciascun fattore si annulla.

La prima linea serve da riferimento per riportare i vari "caposaldi", l'ultima linea contiene le conclusioni (sulla base della regola dei segni), e qui abbiamo usato esplicitamente i segni + e -, oltre allo zero. Sulla linea dei caposaldi abbiamo riportato anche la graduazione; in realtà la cosa non è necessaria e non serve nemmeno rispettare le unità di misura, l'unica cosa che conta è l'ordine dei caposaldi.

Come già accennato, la figura 5.12 permette di concludere che la disequazione proposta è verificata per

$$x \in]-1,1[\cup]2,+\infty[$$
.

Si noti che per risolvere la disequazione $(x^2 - 1)(x + 2) < 0$ avremmo potuto utilizzare lo stesso grafico, senza alcuna variazione e avremmo concluso che $(x^2 - 1)(x + 2) < 0$ è verificata per

$$x \in]-\infty, -1[\cup]1, 2[.$$

Stesse considerazioni per le disequazioni $(x^2-1)(x+2) \le 0$ e $(x^2-1)(x+2) \ge 0$ che avrebbero avuto, rispettivamente, come insieme delle soluzioni

$$]-\infty,-1] \cup [1,2],$$

е

$$[-1,1] \cup [2,+\infty[$$
.

Esempio 5.13. $\frac{x^2-1}{x+2} \ge 0$. La risoluzione di questa disequazione può utilizzare lo stesso grafico della precedente (la regola dei segni per un prodotto o per un quoziente è la stessa!); l'unica differenza consiste nel fatto che bisogna prestare attenzione al fatto che il fattore x+2 ora sta al denominatore è quindi deve essere diverso da zero. Si può introdurre uno speciale simbolo (per esempio una \times) per indicare che il valore x=2 deve andare escluso. Per evitare errori conviene indicarlo già esplicitamente nella linea dei caposaldi. Il grafico è riportato in figura 5.13.

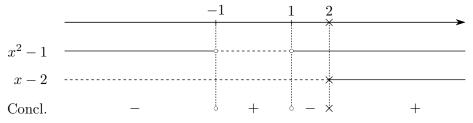


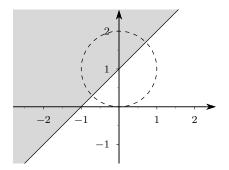
Figura 5.13 Grafico di segno per la disequazione $(x^2 - 1)/(x + 2) \ge 0$

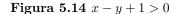
La disequazione proposta è verificata per

$$x \in [-1, 1] \cup [2, +\infty[$$
.

Esempio 5.14. $\frac{x-y+1}{x^2+y^2-2y} \ge 0$. Si procede a trovare il segno del numeratore e del denominatore, rappresentando il risultato nel piano. Successivamente si trova il segno del quoziente con la regola dei segni, esattamente come nel caso di una sola variabile: naturalmente le soluzioni saranno un sottoinsieme del piano che, di solito, non potrà essere descritto analiticamente.

Le figure 5.14 e 5.15 evidenziano gli insiemi di positività del numeratore e del denominatore rispettivamente; le regioni non evidenziate sono gli insiemi di negatività, le retta e la circonferenza sono i punti dove il numeratore e il denominatore si annullano e, naturalmente, questi ultimi andranno esclusi. In ciascuna delle figure è rappresentata anche la curva relativa all'altra, per un utile confronto. La figura 5.16 evidenzia l'insieme delle soluzioni della disequazione, da cui va esclusa l'intera circonferenza. Si noti in particolare che i due punti di intersezione tra la retta e la circonferenza non fanno parte dell'insieme delle soluzioni.





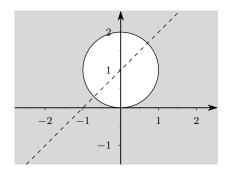


Figura 5.15 $x^2 + y^2 - 2y > 0$

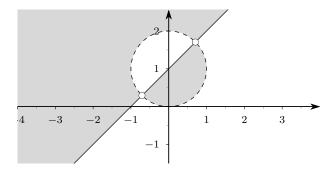


Figura 5.16 $\frac{x-y+1}{x^2+y^2-2y} \ge 0$

5.5 Disequazioni con radicali

Come già le equazioni con radicali, anche le disequazioni con radicali sono abitualmente di difficile risoluzione. Tra quelle con radici quadrate ci occuperemo qui solo dei due tipi più importanti e frequenti nelle nostre applicazioni:

1.
$$\sqrt{f(x)} \ge g(x)$$
 (oppure $\sqrt{f(x)} > g(x)$);

2.
$$\sqrt{f(x)} \le g(x)$$
 (oppure $\sqrt{f(x)} < g(x)$).

Per risolvere le disequazioni del primo tipo si considera l'unione delle soluzioni di due sistemi:

$$\left\{ \begin{array}{l} f(x) \geq 0 \\ g(x) < 0 \end{array} \right. \quad \cup \quad \left\{ \begin{array}{l} f(x) \geq g^2(x) \\ g(x) \geq 0 \end{array} \right. , \quad \left(\text{oppure} \quad \left\{ \begin{array}{l} f(x) \geq 0 \\ g(x) < 0 \end{array} \right. \quad \cup \quad \left\{ \begin{array}{l} f(x) > g^2(x) \\ g(x) \geq 0 \end{array} \right. \right).$$

Per risolvere le disequazioni del secondo tipo si ricorre invece al seguente sistema:

$$\begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \\ f^2(x) \le g(x) \end{cases}, \quad \left(\text{oppure } \begin{cases} f(x) \ge 0 \\ g(x) \ge 0 \\ f^2(x) < g(x) \end{cases} \right).$$

Esempio 5.15. $\sqrt{x^2 - 9x + 14} > x - 8$. Si procede scrivendo e risolvendo i due sistemi, come indicato.

$$\begin{cases} x^2 - 9x + 14 \ge 0 \\ x - 8 < 0 \end{cases} \quad \cup \quad \begin{cases} x^2 - 9x + 14 > (x - 8)^2 \\ x - 8 \ge 0 \end{cases}.$$

Il primo sistema risulta verificato per $x \le 2 \lor 7 \le x < 8$, il secondo per $x \ge 8$. L'unione dei due è dunque verificata per $x \le 2 \lor x \ge 7$.

Esempio 5.16. $\sqrt{4x^2 - 13x + 3} < 2x - 3$. Scrivendo il sistema di tre equazioni indicato sopra si trova:

$$\begin{cases} 4x^2 - 13x + 3 \ge 0 \\ 2x - 3 \ge 0 \\ 4x^2 - 13x + 3 < (2x - 3)^2 \end{cases}$$

Risolvendo il sistema si ottiene $x \geq 3$, che è la soluzione della disequazione data.

Una disequazione che presenti un solo radicale di indice dispari (in particolare di indice 3), si risolve facilmente isolando il radicale ed elevando alla potenza uguale all'indice della radice: si tratta dunque di un problema formalmente più semplice che non il caso delle equazioni con radici quadrate.

Esempio 5.17. $\sqrt[3]{x^2+7} > 2$. Elevando al cubo si ottiene, semplificando, $x^2-1>0$, che ha per soluzioni $x<-1 \lor x>1$.

5.6 Esercizi

Esercizio 5.1. Risolvere le sequenti disequazioni.

1.
$$x^2 + 3x + 2 > 0$$
;

2.
$$-x^2 - 3x + 2 < 0$$
;

3.
$$4 - x^2 > 0$$
:

4.
$$x^2 - x + 6 < 0$$
:

5.
$$(x^2 + 2x - 8)(x + 1) > 0$$
;

6.
$$(x^2-2)(x+1)(1-x) \ge 0$$
;

7.
$$x(x^2+2)(2x-1) < 0$$
;

8.
$$\frac{x+1}{x^2+1} < 0;$$

9.
$$\frac{2x-8}{1-x-x^2} > 0;$$

10.
$$\frac{x^2-4}{x+3} \le 0;$$

11.
$$x^3 - 27 \ge 0$$
;

12.
$$2 - x^3 < 0$$
;

13.
$$x^3(x^2-1)(2-x^2) \le 0$$
;

14.
$$\frac{x-9}{x^3+1} \ge 0;$$

15.
$$\frac{8-x^3}{x^3+9} \le 0$$
.

6 Funzioni

6.1 Funzioni

Dati due insiemi A e B hanno grande interesse nelle applicazioni le relazioni che possono intercorrere tra di loro. Tra tutte le relazioni hanno un interesse cruciale le funzioni, in particolare le funzioni che collegano tra di loro insiemi di numeri reali. Vista l'importanza del concetto diamo una definizione esplicita di funzione, che riassuma quelle che sono le proprietà che ci interesseranno.

Definizione 6.1. Dati due insiemi A e B (che nella maggior parte dei casi saranno due insiemi di numeri reali), si dice funzione di A in B una qualunque legge che faccia corrispondere a ogni elemento di A uno ed un solo elemento di B.

L'insieme A è detto dominio della funzione, l'insieme B è detto codominio. Se x è un elemento dell'insieme A e y è l'unico elemento di B che corrisponde ad A, si dice che y è funzione di x e si scrive y = f(x) (leggi: "y uguale a effe di x").

È molto importante ricordare che per assegnare una funzione occorre assegnare

- il dominio
- il codominio
- ullet una legge o regola che indichi, per ogni x del dominio, quale sia l'unico y corrispondente del codominio.

La notazione più completa per le funzioni è la seguente:

$$f: A \to B, \ x \mapsto f(x),$$

ma spesso si scrive solo

$$x \mapsto f(x)$$
,

se gli insiemi A e B sono già stati precisati o sono chiari dal contesto. Si può anche dire semplicemente la funzione y = f(x), anche se i puristi potrebbero storcere il naso.

Esempio 6.1. Se A e B sono l'insieme dei numeri reali, si può considerare la funzione che a ogni numero reale x fa corrispondere il suo quadrato. In questo caso si dovrebbe scrivere

$$f: \mathbb{R} \to \mathbb{R}, \ x \mapsto x^2$$

ma si può scrivere anche semplicemente

$$x \mapsto x^2$$

oppure (e noi lo faremo sistematicamente)

$$y = x^2$$
.

Per visualizzare le funzioni si usano spesso dei diagrammi a frecce, come quello che segue.

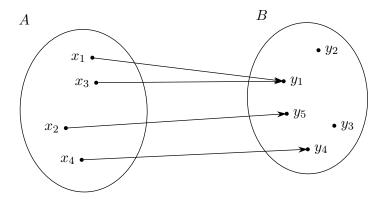


Figura 6.1 Diagramma "a frecce" per visualizzare una funzione (tra insiemi finiti)

Si noti che è obbligatorio che da ogni punto (elemento dell'insieme) A parta esattamente una freccia, mentre sui punti dell'insieme B possono anche arrivare più frecce, oppure nessuna freccia. Si potrebbe dire, usando un linguaggio figurato, che A è l'insieme degli arcieri, B l'insieme dei bersagli e che ogni arciere ha a disposizione nella propria faretra solo una freccia che è costretto a lanciare, mentre non ci sono limitazioni sui bersagli da colpire: ci possono essere bersagli colpiti da più frecce, e anche bersagli non colpiti da alcuna freccia.

Ha particolare interesse nelle applicazioni la determinazione del sottoinsieme del codominio costituito da tutti i punti dove arriva almeno una freccia, cioè, formalmente, l'insieme

$$(6.1) I \subseteq B = \{ y \in B \mid \exists x \in A, y = f(x) \},$$

o anche, a parole, l'insieme degli y di B tali che esiste almeno un x di A, la cui immagine sia y. L'insieme I si chiama insieme immagine. L'insieme immagine si indica anche con f(A), proprio a significare il fatto che si tratta dell'insieme delle immagini di tutte le x di A. Se C è un sottoinsieme di A, si può considerare l'insieme delle immagini di tutte le x di C (che sarà naturalmente un sottoinsieme dell'insieme immagine). Questo insieme si indica con f(C).

È chiaro che rappresentazioni grafiche come quella appena vista hanno senso solo se gli insiemi in questione sono finiti: in caso contrario si dovrebbero disegnare infinite frecce, cosa chiaramente impossibile.

Si usano anche altri tipi di rappresentazione per le funzioni. Per esempio se si considera la funzione che a ogni numero naturale compreso tra 1 e 5 fa corrispondere la sua metà (funzione che ha come dominio i numeri naturali citati e come codominio i numeri razionali), si può usare una tabella a doppia entrata, in cui nella prima colonna si scrivono i numeri naturali $1, 2, \ldots, 5$ e nella seconda colonna le corrispondenti metà di questi numeri.

\boldsymbol{x}	x/2
1	$1/_{2}$
2	1
3	3/2
4	2
5	5/2

Tabella 6.1 Rappresentazione "tabulare" di una funzione

Un altro tipo di rappresentazione è quello dei diagrammi a torta, molto significativo in casi speciali. Consideriamo, ad esempio, un corso universitario dove si sono iscritti 120 alunni, provenienti da varie provincie, come nella tabella che segue:

Gorizia	Pordenone	Treviso	Trieste	Udine
5	70	15	10	20

Si comincerà con il calcolare le percentuali relative alle varie provincie:

Successivamente si calcoleranno le ampiezze delle "fette di torta" da utilizzare per ciascuna provincia, tenendo conto che la torta totale ha un'apertura di 360°:

Gorizia Pordenone Treviso Trieste Udine
$$15^{\circ}$$
 210° 45° 30° 60°

Il grafico è a questo punto immediato:

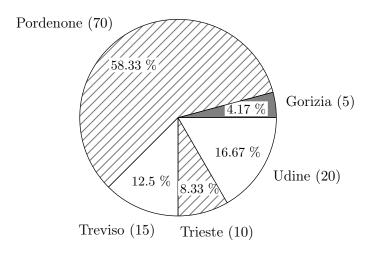


Figura 6.2 Provenienza degli studenti del Corso ..., ripartiti per Provincia, diagramma "a torta"

Ancora un'altra possibilità è quella di un diagramma a barre, che proponiamo qui di seguito, senza commenti.

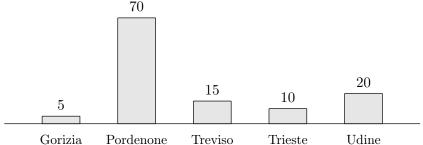


Figura 6.3 Provenienza degli studenti del Corso ..., ripartiti per Provincia, diagramma "a barre"

La rappresentazione più conveniente nel caso delle funzioni tra due insiemi di numeri reali è però quella dei diagrammi o grafici cartesiani, in particolare nel caso in cui gli insiemi siano infiniti quando le rappresentazioni precedenti non sono utilizzabili. L'idea è di considerare un piano in cui si sia fissato un sistema di coordinate cartesiane (ortogonali per semplicità) Oxy e rappresentarvi tutte le coppie (x, y) in cui x è un punto (numero) del dominio della funzione e y = f(x) è il corrispondente valore nel codominio della funzione. Riprendendo in esame l'esempio proposto nella tabella 6.1, dobbiamo rappresentare i punti

$$A = (1, 1/2), B = (2, 1), C = (3, 3/2), D = (4, 2), E = (5, 5/2),$$

ottenendo il grafico che segue.

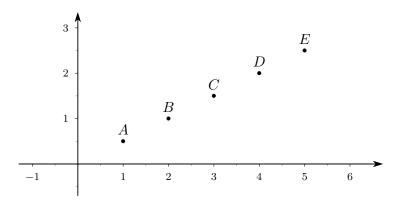


Figura 6.4 Esempio di grafico cartesiano

Il grafico della precedente figura 6.4 è in realtà un grafico a frecce "compattato": siccome i valori del dominio sono punti dell'asse x e quelli del codominio punti dell'asse y, possiamo sempre pensare di tracciare delle frecce che colleghino i punti del dominio con i corrispondenti del codominio, come quelle della figura 6.1, solo che è opportuno che le frecce "passino" per i punti A, B, \ldots :

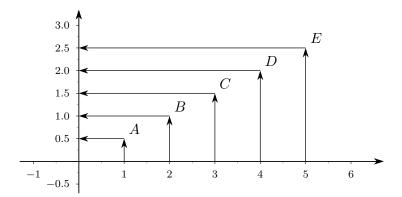


Figura 6.5 Esempio di grafico cartesiano, con frecce

Il grafico 6.4 "compatta" il grafico 6.5 nel senso che ne prende solo gli elementi essenziali, cioè gli "spigoli delle frecce": è evidente che dalla conoscenza degli spigoli si possono facilmente ricostruire le frecce.

Se si confronta la figura 6.4 con la tabella 6.1, ci si rende immediatamente conto dei notevoli vantaggi che il grafico presenta: da esso si può per esempio capire, "a colpo d'occhio", che al crescere di x nel dominio la corrispondente y del codominio cresce, e che tale crescita è costante. La cosa diventa ancora più significativa se si vuole considerare la funzione che a ogni numero reale x faccia corrispondere la sua metà: a differenza di quanto succedeva con la funzione rappresentata nella tabella 6.1, questa volta la x non varia più in un insieme finito e quindi una rappresentazione tabulare non ha alcun senso⁽¹⁾. Un diagramma cartesiano è decisamente più significativo:

 $^{^{1}}$ Si noti comunque che la regola (legge) che collega la x alla y è la stessa del caso precedente: per assegnare una funzione non è sufficiente assegnare la regola di calcolo, occorre anche fissare il dominio e il codominio.

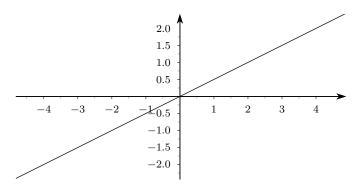


Figura 6.6 Grafico della funzione y = x/2

Naturalmente il diagramma 6.6 contiene anche i punti già rappresentati nel diagramma 6.4:

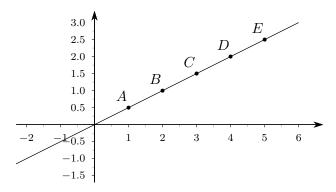


Figura 6.7 Grafico della funzione y = x/2, con evidenziati alcuni punti

ma contiene anche infiniti altri punti. Anche se non è chiaramente possibile rappresentare nel grafico tutte le coppie (x, y) = (x, f(x)) che visualizzano l'andamento della funzione, tuttavia la parte tracciata è sufficiente a rendere evidenti quasi tutte le proprietà che interessano.

Una buona parte del corso di Matematica per l'arte e l'economia sarà dedicata proprio allo studio di strategie adatte a evidenziare le caratteristiche essenziali di una funzione (avente come dominio e codominio sottoinsiemi dell'insieme dei numeri reali) e a tracciarne un grafico indicativo. Un grande aiuto in questo senso può essere fornito dai numerosi software dedicati allo scopo⁽²⁾, ma, come al solito, bisogna tenere conto che il computer è una macchina finita e quindi non può risolvere tutti i problemi. A questo proposito proponiamo un esempio "estremo", precisamente il grafico della funzione

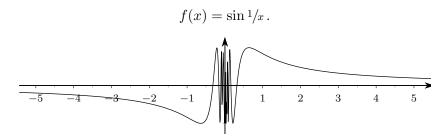


Figura 6.8 *Grafico di* $f(x) = \sin \frac{1}{x}$

²Tra i software commerciali segnaliamo Mathematica e Maple, due pacchetti estremamente sofisticati e complessi. Tra i software non commerciali segnaliamo Maxima (molto simile a Mathematica[™] anche se non ne possiede tutte le potenzialità) e Geogebra. Riteniamo quest'ultimo particolarmente adatto per questo corso e segnaliamo che la maggior parte dei grafici contenuti in questo testo sono ottenuti proprio con Geogebra.

È chiaro che, per valori di x prossimi allo zero, questo grafico è poco significativo⁽³⁾. Purtroppo nemmeno zoomate (in orizzontale) migliorano granché la situazione, come mostrano le due successive figure.

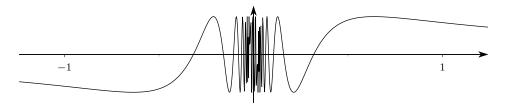


Figura 6.9 Grafico di $f(x) = \sin \frac{1}{x}$, con uno zoom sull'asse delle x

Figura 6.10 Grafico di $f(x) = \sin \frac{1}{x}$, con un ulteriore zoom sull'asse delle x

Naturalmente non sempre le cose vanno così male (per fortuna!). Per la funzione $f(x) = x^3 - 3x^2$, per esempio, il grafico fornito da un software di calcolo è sufficientemente accurato da contenere con buona accuratezza le informazioni necessarie.

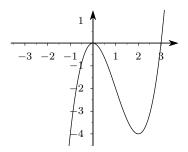


Figura 6.11 *Grafico di* $f(x) = x^3 - 3x^2$

Da questo grafico si vede subito che, al crescere della x da valori negativi fino allo 0, anche la corrispondente y cresce (e abbastanza rapidamente) fino a raggiungere il valore 0; successivamente se la x cresce da 0 a 2, la y decresce fino a raggiungere il valore -4, per poi aumentare di nuovo (e di nuovo abbastanza rapidamente) al crescere di x.

In tutti i grafici cartesiani che abbiamo fatto, tranne quelli delle figure 6.9 e 6.10, abbiamo usato la stessa unità di misura sui due assi: sistemi cartesiani siffatti sono detti monometrici. Di solito però nelle applicazioni la cosa non è possibile, e ne vedremo in seguito i motivi. È opportuno tenere presente che se un sistema cartesiano nel piano non è monometrico, le figure possono essere deformate. Per esempio i due grafici della figura seguente mostrano la circonferenza di centro l'origine e raggio 1, in due diversi sistemi di coordinate, di cui solo il primo è monometrico.

³L'esempio che stiamo considerando richiede la conoscenza di elementi di trigonometria: chi non li possiede non si preoccupi, ci interessa qui solo una semplice considerazione grafica.

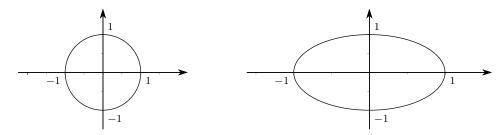
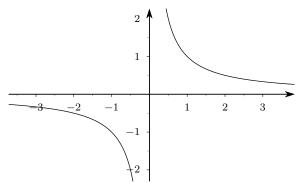
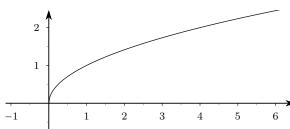


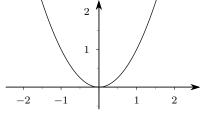
Figura 6.12 Circonferenza di centro l'origine e raggio 1, in due diversi sistemi di coordinate, il primo monometrico, il secondo no

6.2 Qualche grafico di base

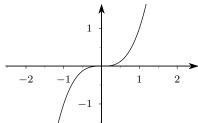
$$f(x) = \frac{1}{x}$$

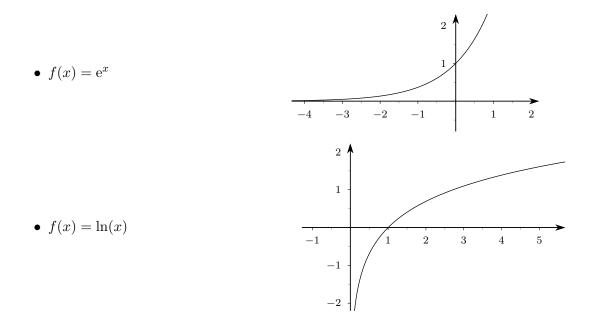






$$f(x) = x^3$$





6.3 Richiami sulle potenze

Se a è un numero reale qualunque e m è un naturale maggiore o uguale a 2, si definisce potenza di base a ed esponente m il numero

(6.2)
$$a^m = \underbrace{a \cdot a \cdot \cdot \cdot a}_{m \text{-volte}}$$

Se m=1 e a è ancora un numero reale qualunque, si pone, per definizione,

$$a^1 = a.$$

Si noti che a^1 non è un prodotto, in quanto per eseguire un prodotto occorrono due fattori. Se poi a è un numero reale diverso da zero, si pone, sempre per definizione,

(6.4)
$$a^0 = 1.$$

Si noti che non abbiamo definito il simbolo 0^0 , che non ha, dunque, alcun significato.

Con queste definizioni si completa il concetto di potenza di base reale ed esponente naturale. La definizione si estende poi fino a consentire anche esponenti interi negativi, ma con base sempre diversa da zero, ponendo

(6.5)
$$a^{-m} = \frac{1}{a^m}, \quad a \neq 0.$$

È opportuno segnalare esplicitamente, anche se è già indicato nella formula (6.5), che il simbolo $0^{\text{num.negativo}}$ non è definito.

È poi possibile ampliare ulteriormente la definizione fino a comprendere esponenti reali qualunque, ma con l'importantissima limitazione che la base debba essere positiva, o al massimo zero se l'esponente è non negativo. Per gli esponenti frazionari, cioè del tipo m/n, con n naturale > 1, la definizione di potenza è abbastanza semplice: si pone infatti, per definizione,

(6.6)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m}, \quad a > 0; \qquad 0^{\frac{m}{n}} = 0, \quad \frac{m}{n} > 0.$$

L'estensione al caso di esponenti reali qualunque (per esempio $a^{\sqrt{2}}$) è decisamente più complessa, e una sua definizione rigorosa esula dagli scopi di questo corso. Ci accontenteremo di valutare il metodo su un esempio significativo. Supponiamo di voler definire $a^{\sqrt{2}}$. Si considerano le successive approssimazioni decimali di $\sqrt{2}$ con un numero sempre maggiore di cifre decimali:

$$1.4 = \frac{14}{10}$$
, $1.41 = \frac{141}{100}$, $1.414 = \frac{1414}{1000}$, $1.4142 = \frac{14142}{10000}$, ...

Noi sappiamo già calcolare a elevato a ciascuno degli esponenti che approssimano $\sqrt{2}$ (perché si tratta di esponenti frazionari); ebbene, $a^{\sqrt{2}}$ sarà il valore limite a cui tende questa successione di numeri, quando l'esponente tende ad essere $\sqrt{2}$.

Al di là comunque della definizione, ciò che conta è che valgono le seguenti proprietà delle potenze (valide qualunque sia il tipo di esponente, e con la limitazione che la base deve essere positiva quando qualche esponente non è intero, e naturalmente diversa da zero se compare al denominatore di una frazione).

$$(6.7) (am)n = amn;$$

$$a^m \cdot a^n = a^{m+n}$$

$$\frac{a^m}{a^n} = a^{m-n}.$$

6.4 Le funzioni potenza

Si chiamano funzioni potenza le funzioni del tipo

$$(6.10) f(x) = x^a,$$

essendo a un numero reale qualunque. Se a è un intero positivo allora il dominio di queste funzioni è tutto \mathbb{R} ; se a è un intero negativo, il dominio è costituito dai reali diversi da zero; negli altri casi il dominio è costituito dai reali positivi.

È evidente che i grafici nei casi a=1 e a=2 rientrano in situazioni già viste: per a=1 si tratta precisamente di una retta per l'origine, con pendenza 1 (la bisettrice del primo e terzo quadrante), nel caso a=2 di una parabola con vertice nell'origine e concavità verso l'alto, grafici che abbiamo riportato nelle figure 6.13 e 6.14 per comodità. I grafici relativi ad alcuni altri casi sono riportati nelle figure successive.

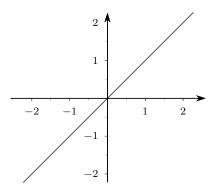


Figura 6.13 La funzione $f(x) = x^1 = x$

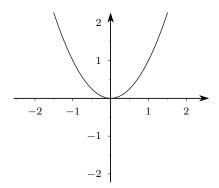
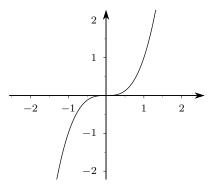
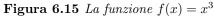


Figura 6.14 La funzione $f(x) = x^2$





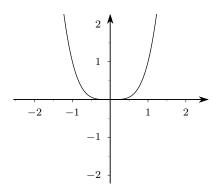


Figura 6.16 La funzione $f(x) = x^4$

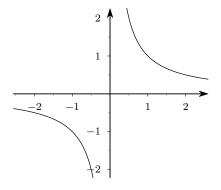


Figura 6.17 *La funzione* $f(x) = x^{-1} = 1/x$

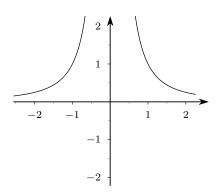


Figura 6.18 *La funzione* $f(x) = x^{-2} = 1/x^2$

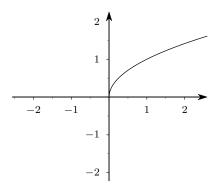


Figura 6.19 *La funzione* $f(x) = x^{1/2} = \sqrt{x}$

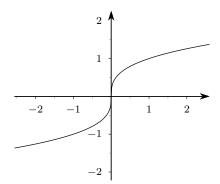


Figura 6.20 La funzione $f(x) = \sqrt[3]{x}$

Anche se non è il caso qui di entrare nei dettagli, segnaliamo che, di solito, la funzione $x^{1/3}$ è ritenuta diversa da $\sqrt[3]{x}$, perché la prima si ritiene definita per $x \geq 0$, la seconda per tutti gli x reali. Si noti che, qualunque sia l'esponente a, il grafico della funzione x^a passa sempre per il punto (1,1), in accordo con il fatto che $1^a=1$.

6.5 Le funzioni esponenziali

Simmetricamente alle funzioni potenza si introducono (e sono molto importanti!) le funzioni esponenziali, cioè le funzioni del tipo

(6.11)
$$f(x) = a^x, \quad a > 0.$$

Si noti che nelle funzioni potenza si ha la base variabile e l'esponente fisso, nelle funzioni esponenziali si ha la base fissa e l'esponente variabile. Il caso della base 1 è poco significativo in quanto $1^x = 1$, $\forall x \in \mathbb{R}$. I grafici relativi a queste funzioni, con alcune scelte delle basi sono riportati nelle figure che seguono.

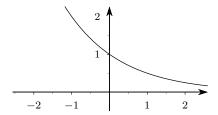


Figura 6.21 *La funzione* $f(x) = (1/2)^x$

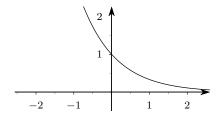


Figura 6.22 *La funzione* $f(x) = (1/3)^x$

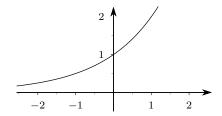


Figura 6.23 La funzione $f(x) = 2^x$

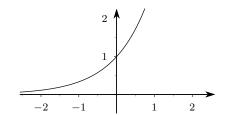


Figura 6.24 La funzione $f(x) = 3^x$

Come si può intuire dalle figure 6.21, 6.22, 6.23, 6.24, si hanno due tipi di comportamento e precisamente:

- 1. se 0 < a < 1, al crescere della x il corrispondente valore di y diminuisce (si parla di funzione decrescente come preciseremo meglio nel seguito);
- 2. se a > 1, al crescere della x cresce anche il corrispondente valore di y (si parla di funzione crescente come preciseremo meglio nel seguito).

È altresì importante osservare che la velocità della crescita, per funzioni esponenziali con base a > 1, è molto elevata. La cosa si può valutare bene controllando i dati della tabella 6.2.

x	x^2	2^x
1	1	2
2	4	4
3	9	8
4	16	16
5	25	32
6	36	64
10	100	1024
100	10000	$\sim 1.27 \cdot 10^{30}$

Tabella 6.2 Confronto tra x^2 e 2^x

Nelle applicazioni interessa principalmente il caso in cui la base della funzione esponenziale è il *numero di Nepero*, indicato con "e", e di cui, per ora, ci basta sapere che si ha

$$e \simeq 2.718$$
 .

Trattandosi di una base maggiore di 1, la relativa funzione esponenziale sarà crescente. Quando si parla di funzione esponenziale senza precisare la base, di solito si fa riferimento alla funzione e^x , che si scrive anche exp(x).

Si noti che tutte le funzioni esponenziali passano per il punto (0,1), in accordo con il fatto che $a^0 = 1$, per tutti i valori di a. Si noti infine (cosa molto importante!) che a^x è un numero strettamente maggiore di zero, qualunque sia x.

6.6 Le funzioni logaritmo

Un problema molto importante che si presenta con le funzioni esponenziali è quello della risoluzione di equazioni esponenziali come per esempio l'equazione $2^x = 8$. È evidente che l'unica soluzione possibile di questa equazione è x = 3 e questo trova conferma nel grafico della figura 6.25.

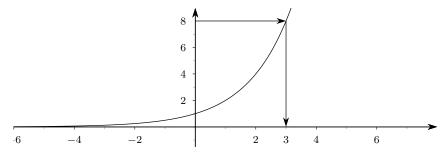


Figura 6.25 L'equazione $2^x = 8$

Se però consideriamo l'equazione $2^x = 3$, dall'esame della figura 6.26 possiamo concludere che ci deve essere una soluzione, ma essa non rientra in nessuno dei "numeri conosciuti".

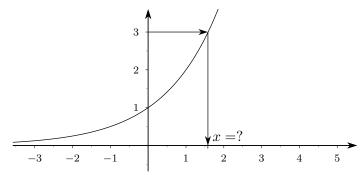


Figura 6.26 L'equazione $2^x = 3$

È per risolvere problemi come questo che si introduce il concetto di logaritmo. Precisamente si dà la seguente definizione.

Definizione 6.2. Siano dati un numero reale a > 0 e $a \ne 1$ e un numero reale b > 0. Si chiama logaritmo in base a di b, e si indica con

(6.12)
$$\log_a(b)$$
, o semplicemente $\log_a b$,

l'esponente che si deve dare ad a per ottenere b.

In formule la definizione 6.2 si può sintetizzare come segue:

$$a^{\log_a b} = b.$$

Per esempio la x che risolve l'equazione $2^x = 3$ è data dal $\log_2 3$, perché

$$2^{\log_2 3} = 3$$
.

Esempio 6.2. $\log_3 81 = 4$, perché $2^4 = 81$.

Esempio 6.3. $\log_{10} 1000 = 3$, perché $10^3 = 1000$.

Esempio 6.4.
$$\log_2 \frac{1}{16} = -4$$
, perché $2^{-4} = \frac{1}{2^4} = \frac{1}{16}$.

Esempio 6.5.
$$\log_{10} \frac{1}{10} = -1$$
, perché $10^{-1} = \frac{1}{10}$.

In matematica la più importante base dei logaritmi è il numero "e" di Nepero e il logaritmo in base "e" si chiama anche logaritmo naturale e si indica con la scrittura $\ln x$, cioè si pone. (4)

$$\log_{\mathbf{e}} x = \ln x.$$

Dalle proprietà delle potenze si ricavano le seguenti proprietà dei logaritmi, che qui ci limitiamo solo ad enunciare, ricordando che a deve essere maggiore di zero e diverso da 1.

(6.15)
$$\log_a(xy) = \log_a x + \log_a y, \quad x > 0, y > 0.$$

(6.16)
$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y, \quad x > 0, \ y > 0.$$

(6.17)
$$\log_a(x)^y = y \log_a x, \quad x > 0.$$

$$\log_a a = 1.$$

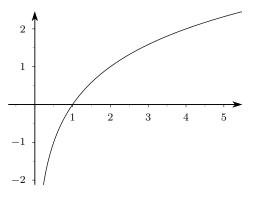
(6.19)
$$\log_a 1 = 0.$$

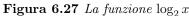
Ricordando la formula (6.13) e le proprietà appena scritte possiamo concludere che valgono le seguenti due proprietà che legano logaritmi ed esponenziali.

(6.20)
$$a^{\log_a x} = x, \ \forall x > 0, \qquad \log_a a^x = x, \ \forall x \in \mathbb{R}.$$

Le formule (6.20) esprimono la proprietà che le funzioni logaritmo ed esponenziale sono *inverse* una dell'altra, in un senso che preciseremo in seguito.

Nelle figure 6.27 e 6.28 sono riportati i grafici della funzione logaritmo con una base maggiore di 1 e una minore di 1: valgono le stesse osservazioni già fatte per le funzioni esponenziali.





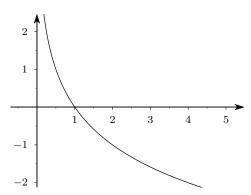


Figura 6.28 La funzione $\log_{1/2} x$

Si noti che tutte le funzioni logaritmo passano per il punto (1,0), in accordo con il fatto che $\log_a 1 = 0$, per qualunque base a e che il dominio di queste funzioni è costituito da tutti gli x > 0 (attenzione: strettamente maggiori di zero!).

⁴Purtroppo questa notazione non è adottata da tutti; alcuni scrivono $\log x$ per indicare il logaritmo naturale, mentre spesso la scrittura $\log x$ è usata per indicare il logaritmo in base 10. Noi useremo $\ln x$ per il logaritmo naturale, e $\log x$ per il logaritmo in base 10, in accordo con la quasi totalità delle calcolatrici e dei software per computer.

Le calcolatrici tascabili consentono di calcolare i logaritmi solo nella basi "e" e 10. Per calcolare i logaritmi in un'altra base si può usare la seguente formula di cambiamento di base, che ci limitiamo a dare senza alcuna giustificazione:

$$\log_a b = \frac{\ln b}{\ln a} \,.$$

6.6.1 Cenno sulle disequazioni con logaritmi ed esponenziali

Ci limiteremo a considerare solo casi molto semplici, ragionando principalmente su alcuni esempi.

Esempio 6.6. $2^x > 32$ (= 2^5). Basta ricordare le proprietà delle potenze per concludere che la soluzione è x > 5 (attenzione: si noti che la base è maggiore di 1, per cui la funzione 2^x è crescente).

Esempio 6.7. $3^x < 5$. La strategia risolutiva più semplice consiste nel prendere il logaritmo naturale di ambo i membri e applicare le proprietà dei logaritmi: $\ln 3^x < \ln 5$, da cui $x \ln 3 < \ln 5$, e infine $x < \frac{\ln 5}{\ln 3}$.

Esempio 6.8. $2^{x^2-1} > 8$. Si osserva che si può scrivere $2^{x^2-1} > 2^3$, da cui $x^2 - 1 > 3$, $x^2 - 4 > 0$ e infine $x < -2 \lor x > 2$.

Esempio 6.9. $\ln(2x^2+x)>0$. Si deve intanto tenere conto che deve essere $2x^2+x>0$ perché il logaritmo abbia senso, da cui $x<-1/2 \lor x>0$. Dopodiché si prende l'esponenziale in base e di ambo i membri, ottenendo

$$e^{\ln(2x^2+x)} > e^0 \Rightarrow 2x^2 - x > 1 \Rightarrow 2x^2 - x - 1 > 0 \Rightarrow x < -1 \lor x > 1/2$$
.

Tenendo conto delle condizioni di esistenza si trova infine che la disequazione è verificata per $x < -1 \lor x > 1/2$.

Esempio 6.10. $\ln(x-1) \ge \ln(-x+3)$. Si cominciano a scrivere le condizioni di esistenza: $x > 1 \land x < 3$, da cui 1 < x < 3. Successivamente si prende l'esponenziale, in base e, di ambo i membri, ottenendo $x-1 \ge -x+3$, da cui $x \ge 2$. Tenendo conto delle condizioni di esistenza si trova $2 \le x < 3$.

Esempio 6.11. $2^x > -3$. Poiché il primo membro è sempre positivo, la disequazione risulta verificata per tutti i valori reali di x.

6.7 La funzione valore assoluto

6.7.1 Valore assoluto o modulo

Definizione 6.3. Dato un numero reale x si chiama valore assoluto, o modulo, di x, e si indica con |x|, il numero positivo così definito:

(6.22)
$$|x| = \begin{cases} x, & se \quad x \ge 0 \\ -x, & se \quad x < 0 \end{cases}.$$

Dal punto di vista grafico, se si rappresentano i numeri sulla retta cartesiana, il modulo di un numero rappresenta la sua distanza dall'origine.

La funzione valore assoluto, cioè f(x) = |x| ha il grafico della figura 6.29.

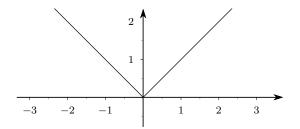


Figura 6.29 La funzione valore assoluto

Esempio 6.12. |5| = 5.

Esempio 6.13. |-3| = 3.

Esempio 6.14. $|1-\sqrt{2}| = -(1-\sqrt{2}) = \sqrt{2} - 1$.

Esempio 6.15. $|-2| + |\sqrt{5} - 2| = 2 + (\sqrt{5} - 2) = \sqrt{5}$.

6.7.2 Proprietà del valore assoluto

Per la funzione valore assoluto valgono le seguenti proprietà.

- $|x| \ge 0, \ \forall x \in \mathbb{R}.$
- |x| = 0 se e soltanto se x = 0.
- |x| = |-x|.
- $|x + y| \le |x| + |y|$.
- $\bullet ||xy| = |x||y|.$
- $\bullet ||x-y| = |y-x|.$
- $|x y| \le |x z| + |z y|$.
- $|x|^2 = x^2$.

6.7.3 Disequazioni con valore assoluto

Le disequazioni fondamentali sono le seguenti.

$$|x| > a$$
, $|x| \ge a$, $|x| < a$, $|x| \le a$,

dove a è un numero reale. Se a è negativo le prime due disequazioni sono sempre verificate, la terza e la quarta non sono mai verificate, per la prima proprietà del modulo riportata sopra. Se invece a > 0 allora:

- $|x| > a \Leftrightarrow x < -a \lor x > a$;
- $|x| \ge a \Leftrightarrow x \le -a \lor x \ge a;$
- $|x| < a \Leftrightarrow -a < x < a;$
- $|x| \le a \Leftrightarrow -a \le x \le a$.

Esempio 6.16. $|x| > 0 \Rightarrow x < 0 \lor x > 0$, ovvero $x \neq 0$.

Esempio 6.17. $|x| \ge 0 \Rightarrow x \le 0 \lor x \ge 0$, ovvero tutti gli x, come del resto risulta dalle proprietà del modulo.

Esempio 6.18. $|x| \le 3 \Rightarrow -3 \le x \le 3$.

La discussione grafica di queste disequazioni è particolarmente significativa e fornisce una semplice giustificazione del metodo di risoluzione proposto. Lo possiamo vedere nell'esempio seguente.

Esempio 6.19. |x| > 2.

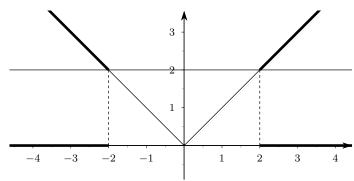


Figura 6.30 La disequazione |x| > 2

Per risolvere disequazioni di altro tipo bisognerà distinguere i vari casi che si possono presentare e poi unire tutti i risultati ottenuti. Per capire il metodo si possono vedere gli esempi che seguono.

Esempio 6.20. |x| + 2x - 1 > 0. Poiché |x| può valere -x o x, distingueremo due casi.

1.
$$\begin{cases} x < 0 \\ -x + 2x - 1 > 0 \end{cases} \Rightarrow \begin{cases} x < 0 \\ x > 1 \end{cases};$$
2.
$$\begin{cases} x \ge 0 \\ x + 2x - 1 > 0 \end{cases} \Rightarrow \begin{cases} x \ge 0 \\ x > 1/3 \end{cases}.$$

Il primo sistema non ha soluzioni, il secondo è verificato per x>1/3, dunque le soluzioni della disequazione proposta sono: x>1/3.

Esempio 6.21. |x-1|+3x-5<0. Poiché |x-1| può valere x-1 oppure -(x-1)=-x+1, distingueremo sempre due casi.

1.
$$\begin{cases} x < 1 \\ -x + 1 + 3x - 5 < 0 \end{cases}$$
2.
$$\begin{cases} x \ge 1 \\ x - 1 + 3x - 5 < 0 \end{cases}$$

Il primo sistema è verificato per x < 1, il secondo per $1 \le x < 3/2$, dunque le soluzioni della disequazione proposta sono: x < 3/2.

6.8 Grafici derivati

A partire da un grafico noto si possono costruire con semplici tecniche numerosi altri grafici: considereremo qui alcune di queste tecniche, facendo riferimento al generico grafico riportato nella figura 6.31.

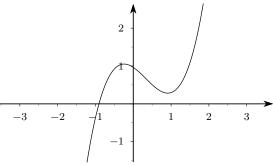
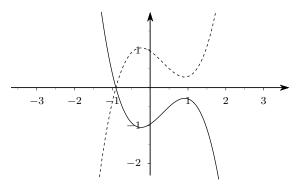


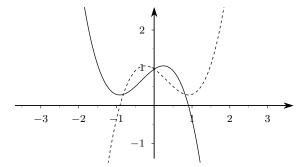
Figura 6.31 Grafico di una generica funzione f(x)

In tutti i grafici derivati che seguono abbiamo riportato in tratteggio anche il grafico originale, per un utile confronto.

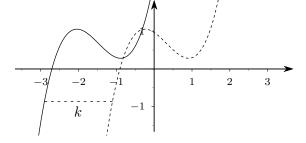
Simmetria rispetto all'asse delle x: cambiare f(x) in -f(x).



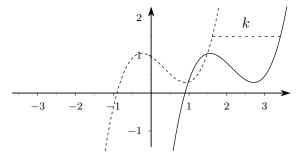
Simmetria rispetto all'asse delle y: cambiare f(x) in f(-x).



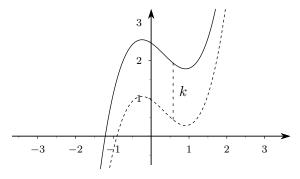
Traslazione di k (> 0) unità verso sinistra: cambiare f(x) in f(x+k).



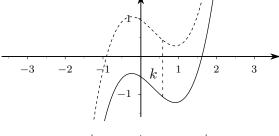
Traslazione di k (> 0) unità verso destra: cambiare f(x) in f(x-k).



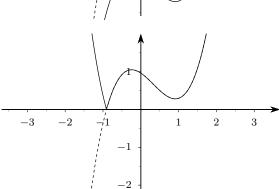
Traslazione di k (> 0) unità verso l'alto: cambiare f(x) in f(x) + k.



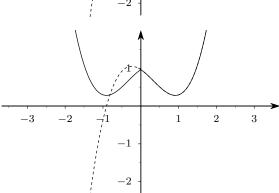
Traslazione di k (> 0) unità verso il basso: cambiare f(x) in f(x) - k.



Per cambiare f(x) in |f(x)| si lascia inalterata la parte di grafico sopra l'asse delle x, mentre la parte di grafico sotto l'asse delle x viene "ribaltata" rispetto all'asse delle x stesso.



Per cambiare f(x) in f(|x|) si lascia inalterata la parte di grafico a destra dell'asse y, mentre la parte di grafico a sinistra dell'asse y si ottiene facendo la simmetrica della parte destra rispetto all'asse y stesso.



Naturalmente le tecniche viste possono essere usate in combinazione tra loro, come vedremo su alcuni esempi.

Esempio 6.22. Tracciare il grafico di $f(x) = -\sqrt{-x} + 1$.

Si comincia col tracciare il grafico di $g(x) = \sqrt{x}$ (vedi la relativa figura nella pagina 41). Poi si traccia il grafico di $\sqrt{-x}$ (simmetria rispetto all'asse delle y) e successivamente quello di $-\sqrt{-x}$ (ulteriore simmetria, questa volta rispetto all'asse delle x. Infine si traccia il grafico di $-\sqrt{-x}+1$, operando una traslazione verso l'alto di una unità. I tre passaggi sono riportati nelle figure 6.32, 6.33 e 6.34.

Si noti che si poteva anche scrivere $f(x) = -(\sqrt{-x}-1)$. Si poteva dunque procedere a tracciare prima \sqrt{x} , poi $\sqrt{-x}$, successivamente $\sqrt{-x}-1$, e infine $-(\sqrt{-x}-1)$, ottenendo lo stesso risultato (come deve essere!).

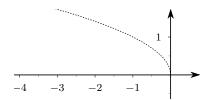


Figura 6.32 Grafico di $\sqrt{-x}$

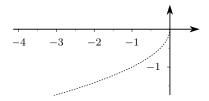


Figura 6.33 Grafico di $-\sqrt{-x}$

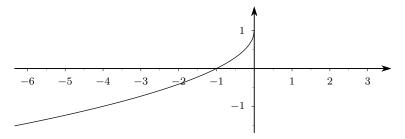


Figura 6.34 Grafico di $-\sqrt{-x}+1$

Esempio 6.23. Tracciare il grafico di $f(x) = -\sqrt{-x-1}$.

È indispensabile riscrivere la funzione come $f(x) = \sqrt{-(x+1)}$, per poter ricondurre questo caso a quelli trattati (si presti particolare attenzione a questo fatto!). La successione questa volta è \sqrt{x} (già noto), $\sqrt{-x}$ (anche questo già considerato sopra nella figura 6.32), e infine $\sqrt{-(x+1)}$, il cui grafico è riportato nella figura 6.35.

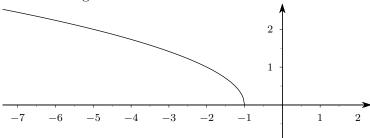


Figura 6.35 La funzione $\sqrt{-x-1}$

Esempio 6.24. Tracciare il grafico di $f(x) = \ln(|x-1|)$.

La successione richiesta è: $\ln x$ (già noto), $\ln |x|$ (a sinistra dell'asse y si prende il simmetrico della parte destra), e infine $\ln(|x-1|)$ (traslazione verso destra di una unità). I due passaggi finali sono riportati nellea figure 6.36 e 6.37.

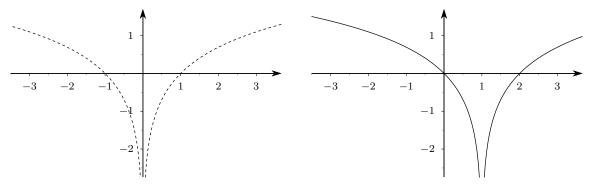


Figura 6.36 *Grafico di* $\ln |x|$

Figura 6.37 *Grafico di* $\ln |x-1|$

Esempio 6.25. Tracciare il grafico di $f(x) = \frac{1}{|x|-1}$.

La successione di passaggi richiesta è: $\frac{1}{x}$ (già noto), $\frac{1}{x-1}$ (traslazione verso destra di 1 unità), e infine $\frac{1}{|x|-1}$ (sostituzione della parte a sinistra dell'asse y con la simmetrica della parte destra. Le figure 6.38 e 6.39 riportano i due ultimi passaggi. In esse abbiamo tracciato anche le rette

x = 1 e x = -1, che costituiscono due asintoti verticali, secondo una definizione che daremo successivamente.

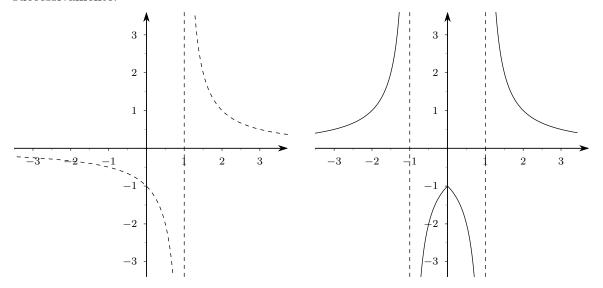


Figura 6.38 Grafico di 1/x - 1

Figura 6.39 Grafico di 1/|x|-1

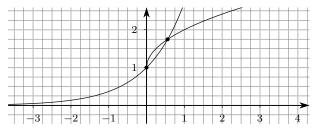
Si noti che, una volta tracciati i grafici con le tecniche viste, è possibile dedurre facilmente dai grafici stessi il dominio e l'insieme immagine della funzione.

Utilizzando i grafici di funzioni si possono anche risolvere, per via grafica, sistemi di equazioni in due incognite più complessi di quelli trattati nel paragrafo 4.6 del capitolo 3, anche se di solito si può agevolmente trovare il numero di soluzioni, mentre il valore esplicito delle soluzioni può essere trovato solo in via approssimata.

Esempio 6.26. Per risolvere il sistema

$$\begin{cases} y = \sqrt{x} + 1 \\ y = e^x \end{cases}$$

si possono tracciare i grafici delle due funzioni e poi valutare il numero e la posizione dei loro punti di intersezione (valutazione più facile se si ha una carta finemente quadrettata).



La figura mostra che ci sono due intersezioni, una in corrispondenza di x=0 (cosa abbastanza facile da verificare), la seconda circa in corrispondenza di x=0.5. I corrispondenti valori di y sono 1 e circa 1.8. Un calcolo più preciso, fatto con opportuni software, fornisce x=0.557832337000022 e y=1.746881742312678.

Con le stesse tecniche si possono anche risolvere sistemi di disequazioni più complessi di quelli trattati nel paragrafo 5.3.2 del capitolo 5.

7 Ancora alcuni concetti di base sulle funzioni

7.1 Operazioni sulle funzioni

In questo paragrafo il dominio delle funzioni è un sottoinsieme A di \mathbb{R} o di \mathbb{R}^2 , mentre il codominio è sempre \mathbb{R} : diremo brevemente funzioni reali di una o due variabili reali, ma spesso parleremo semplicemente di funzioni di una o due variabili, senza ulteriori precisazioni.

Date due funzioni f e g, esse si possono sempre sommare, sottrarre e moltiplicare; se la seconda è sempre diversa da zero, si possono anche dividere.

Esempio 7.1. Se f(x) = |x| e $g(x) = x^2 + 1$, entrambe con dominio \mathbb{R} , la funzione somma di f e $g \in |x| + x^2 + 1$, la differenza $\in |x| - x^2 - 1$, il prodotto $|x| (x^2 + 1)$, il quoziente $|x|/(x^2 + 1)$.

Esempio 7.2. Se $f(x) = e^x e g(x) = x^2$, si può sempre fare la somma e il prodotto; per poter fare f/g si deve "restringere" il dominio, in modo da escludere il valore 0, che annullerebbe il denominatore.

Con opportune condizioni due funzioni f e g si possono anche comporre, cioè farle agire in successione: il risultato (in termini informatici diremmo l'output) della prima lo usiamo come input per la seconda, ottenendo alla fine il risultato voluto. Se per esempio la prima funzione è $f(x) = x^2$ e la seconda è $g(x) = e^x$, allora la composta di f (prima funzione) e g (seconda funzione) è e^{x^2} . La funzione composta si indica con g(f(x)); si presti particolare attenzione che la prima funzione è la più interna nella scrittura, la seconda è la più esterna.

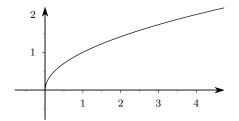
Per poter fare la composizione si deve naturalmente richiedere che l'insieme immagine della prima sia contenuto nel dominio della seconda, visto che l'output della prima deve essere usato come input per la seconda. Se per esempio la prima funzione è $f(x) = x^2 - 1$ e la seconda è $g(x) = \sqrt{x}$, non si può fare a cuor leggero la composta, perché se, per esempio, x = 0, la prima dà come risultato -1 che non può essere "dato in pasto" alla seconda funzione. In casi come questo, comunque, basterà restringere il dominio della prima funzione: nell'esempio basterà limitarsi a considerare solo $x \le -1 \lor x \ge 1$.

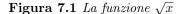
7.2 Funzioni elementari e funzioni definite "a pezzi"

Si chiamano elementari le funzioni (definite in un sottoinsieme di \mathbb{R} o di \mathbb{R}^2) in cui sulla variabile, o sulle due variabili, si eseguono solo operazioni di somma, sottrazione, prodotto, quoziente, o dove sono coinvolte le funzioni potenza, radice, logaritmo, esponenziale, seno e coseno. Si tratta praticamente di tutte le funzioni con cui avremo a che fare nel nostro corso.

Il modo più semplice che abbiamo a disposizione (e di cui faremo largo uso) per costruire funzioni non elementari è quello della definizione "a pezzi" (piecewise definition nei software più comuni). Si tratta sostanzialmente di "unire" due funzioni (o meglio due grafici di funzioni) definite, su due sottoinsiemi diversi (o ristrette a due insiemi diversi) di \mathbb{R} (più raramente per noi di \mathbb{R}^2).

Esempio 7.3. Consideriamo le due funzioni $f(x) = \sqrt{x}$ e $g(x) = \sqrt{-x+1}$, la prima definita per $x \ge 0$, la seconda per $x \le 1$. Di entrambe sappiamo già tracciare i grafici, riportati nelle figure 7.1 e 7.2.





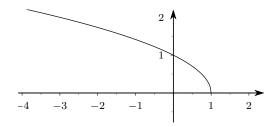
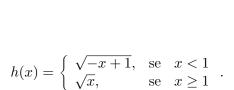


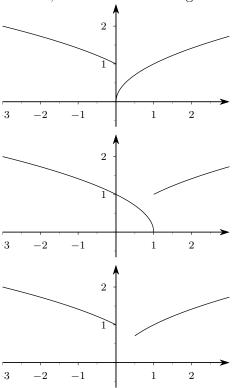
Figura 7.2 La funzione $\sqrt{-x-1}$

A partire da queste funzioni possiamo costruirne altre, come mostrato di seguito.

$$g(x) = \begin{cases} \sqrt{-x+1}, & \text{se } x < 0 \\ \sqrt{x}, & \text{se } x \ge 0 \end{cases}.$$



$$k(x) = \begin{cases} \sqrt{-x+1}, & \text{se } x < 0 \\ \sqrt{x}, & \text{se } x \ge 1 \end{cases}$$



7.3 Dominio delle funzioni elementari

Nel dare la definizione di funzione, vedi la definizione 6.1 nella pagina 35, abbiamo detto che per assegnare una funzione occorre assegnare un dominio, un codominio, e una legge che associ a ciascun punto del dominio un punto (e uno solo) del codominio. Nel caso delle funzioni elementari si sottintende sempre che il dominio sia il più grande sottoinsieme (di \mathbb{R} o di \mathbb{R}^2) in cui le operazioni da eseguire sulla variabile o sulle variabili hanno senso. Per determinare il dominio di queste funzioni si deve dunque in generale risolvere un sistema di disequazioni che esplicitano le condizioni da imporre affinché le operazioni da eseguire siano lecite.

Esempio 7.4. Per trovare il dominio di $f(x) = \sqrt{x-1} + \ln(2-x)$, devo considerare il seguente sistema di disequazioni

$$\left\{ \begin{array}{l} x-1 \geq 0 \\ 2-x > 0 \end{array} \right.,$$

che traducono in formule le condizioni che il radicando della radice quadrata sia non negativo e che l'argomento del logaritmo sia strettamente positivo. Il dominio è $1 \le x < 2$.

Esempio 7.5. Per trovare il dominio di $f(x,y) = \sqrt{x^2 + y^2 - 1}$, devo risolvere la disequazione $x^2 + y^2 - 1 \ge 0$ (radicando non negativo), che ha come soluzioni tutti i punti del piano non interni alla circonferenza di centro l'origine e raggio 1.

7.4 Funzioni crescenti e decrescenti

Attenzione: questi concetti sono validi solo per funzioni di una variabile.

Definizione 7.1 (Funzioni crescenti o decrescenti). Una funzione f(x), definita in un sottoinsieme $A \subseteq \mathbb{R}$ si dice crescente se, presi comunque x_1, x_2 nel dominio, l'essere $x_1 < x_2$ implica che $f(x_1) \le f(x_2)$ (se invece di \le si ha <, si dice strettamente crescente); la funzione si dice invece decrescente se, presi comunque x_1, x_2 nel dominio, l'essere $x_1 < x_2$ implica che $f(x_1) \ge f(x_2)$ (se invece di \ge si ha >, si dice strettamente decrescente).

In pratica una funzione è crescente se al crescere di x cresce anche il corrispondente valore di y = f(x), decrescente in caso contrario, cioè al crescere di x decresce il corrispondente valore di y = f(x).

Le funzioni e^x , $\ln x$, \sqrt{x} sono tutte crescenti (strettamente); la funzione e^{-x} è decrescente (strettamente); la funzione x^2 non è né crescente né decrescente.

Se una funzione non è né crescente né decrescente, può succedere che sia crescente o decrescente a tratti. Per esempio la funzione x^2 è decrescente per x < 0, crescente per x > 0; la funzione 1/x è crescente sia per x < 0 che per x > 0 (ma, attenzione, non su tutto il suo dominio!). Le funzioni crescenti o decrescenti a tratti sono quelle che più comunemente ci capiterà di incontrare nel seguito.

7.5 Funzioni iniettive, suriettive, biiettive

Definizione 7.2. Una funzione $f: A \to B$ si dice iniettiva se due punti diversi del dominio P_1 e P_2 hanno immagini diverse; una funzione si dice suriettiva se ogni punto del codominio è immagine di almeno un punto del dominio, ovvero se l'insieme immagine coincide con il codominio; una funzione che sia contemporaneamente iniettiva e suriettiva si dice biiettiva o biunivoca.

Questi concetti hanno per noi interesse in particolare nel caso delle funzioni di una sola variabile. In questo caso è evidente che una funzione strettamente crescente o strettamente decrescente è iniettiva.

Esempio 7.6. Le funzioni e^x , $\ln x$, x^3 , \sqrt{x} sono tutte funzioni iniettive.

Esempio 7.7. Le funzioni, aventi come codominio \mathbb{R} , $\ln x$ e x^3 sono funzioni suriettive. Anche le funzioni e^x e \sqrt{x} possono diventare suriettive se "restringiamo" il codominio rispettivamente agli y > 0 e agli $y \geq 0$.

Esempio 7.8. La funzione, di \mathbb{R} in \mathbb{R} , x^3 è iniettiva e suriettiva, dunque biunivoca.

Esempio 7.9. La funzione x^2 non è iniettiva: i punti -1 e 1, per esempio, pur essendo diversi hanno la stessa immagine.

7.6 Esercizi

Esercizio 7.1. Determinare il dominio delle seguenti funzioni.

1.
$$f(x) = x + 1$$
;

$$2. \ f(x) = \frac{x}{2-x};$$

3.
$$f(x) = \sqrt{x+1}$$
;

$$4. \ f(x) = \sqrt{x} \cdot \frac{1}{1+x};$$

$$5. \ f(x) = \sqrt{\frac{x}{2-x}};$$

6.
$$f(x) = \sqrt{(x-1)(1+x)};$$

7.
$$f(x) = \frac{\sqrt{x}}{\sqrt{2x-3}};$$

$$8. \ f(x) = \sqrt{\frac{x}{2x-3}};$$

9.
$$f(x) = \frac{\sqrt{x^2 - 9}}{3 - x}$$
;

10.
$$f(x) = \sqrt{2x}\sqrt{x+3}$$
;

11.
$$f(x) = \sqrt{x+1} - x + \sqrt{2-x}$$
.

8 Limiti e continuità per funzioni di una variabile

8.1 Considerazioni introduttive

Prima di iniziare la vera e propria trattazione dell'importante concetto di limite per le funzioni reali, consideriamo un esempio per capire il senso delle definizioni formali che daremo, segnalando che, vista la natura e gli scopi di questo corso privilegeremo sempre gli aspetti più propriamente "applicativi", naturalmente non rinunciando al rigore necessario.

Esempio 8.1. Consideriamo la funzione

$$f(x) = \frac{\sqrt{x} - 1}{x - 1},$$

il cui dominio naturale è $[0,1[\cup]1,+\infty[$. Usando un foglio di calcolo, determiniamo (se c'è!!) il valore a cui tende questo rapporto, al tendere di x a 1 (valore non compreso nel dominio), a partire, per esempio, da x=2. Otteniamo la tabella 8.1.

		4	(= 1) /· · ·
x	$\sqrt{x}-1$	x-1	$(\sqrt{x}-1)/(x-1)$
2,0000000000000000	0,414213562373095	1,0000000000000000	0,414213562373095
1,5000000000000000	0,224744871391589	0,500000000000000	0,449489742783178
1,400000000000000	0,183215956619923	0,400000000000000	0,458039891549808
1,300000000000000	0,140175425099138	0,300000000000000	0,467251416997127
1,2000000000000000	0,095445115010332	0,200000000000000	0,477225575051661
1,100000000000000	0,048808848170152	0,100000000000000	0,488088481701516
1,0500000000000000	0,024695076595960	0,050000000000000	0,493901531919198
1,040000000000000	0,019803902718557	0,040000000000000	0,495097567963925
1,030000000000000	0,014889156509222	0,030000000000000	0,496305216974065
1,0200000000000000	0,009950493836208	0,0200000000000000	0,497524691810391
1,010000000000000	0,004987562112089	0,010000000000000	0,498756211208895
1,005000000000000	0,002496882788171	0,005000000000000	0,499376557634223
1,004000000000000	0,001998003990028	0,004000000000000	0,499500997506952
1,003000000000000	0,001498876684342	0,003000000000000	0,499625561447503
1,002000000000000	0,000999500499376	0,002000000000000	0,499750249687958
1,0010000000000000	0,000499875062461	0,001000000000000	0,499875062461019
1,000500000000000	0,000249968757810	0,000500000000000	0,499937515620330
1,000100000000000	0,000049998750062	0,000100000000000	0,499987500624021
1,000050000000000	0,000024999687508	0,000050000000000	0,499993750157135
1,000010000000000	0,000004999987500	0,00001000000000	0,499998749999897
1,000005000000000	0,000002499996875	0,000005000000000	0,499999375011051
1,000001000000000	0,000000499999875	0,000001000000000	0,499999875099910

Tabella 8.1 Valori di x, $\sqrt{x}-1$, x-1, $(\sqrt{x}-1)/(x-1)x$, per x variabile da 2 a "quasi 1"

Possiamo usare un grafico per un ulteriore controllo numerico del risultato.

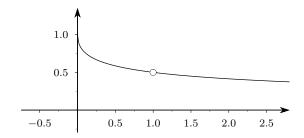


Figura 8.1 Grafico della funzione $f(x) = (\sqrt{x} - 1)/(x - 1)$

Notiamo che in corrispondenza di x = 1 non viene tracciato alcun punto sul grafico della funzione.

Potremo scrivere:

$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1} = \frac{1}{2} \,,$$

naturalmente riservandoci di precisare meglio il senso della scrittura.

Anche se queste considerazioni intuitive sono abbastanza significative, abbiamo bisogno di una teoria e di tecniche di calcolo più raffinate per risolvere il problema che ha, come già accennato, grande importanza applicativa. Purtroppo le cose non sono molto semplici, e qui ci limiteremo solo agli aspetti essenziali.

8.2 Intorni di un numero reale e punti di accumulazione

Definizione 8.1 (Intorno di un numero reale). Dato un numero reale x_0 , si chiama intorno di x_0 di raggio r e si indica con $I(x_0, R)$, o con $I(x_0)$ di raggio r, l'insieme dei numeri reali che hanno da x_0 distanza minore di r, cioè

$$I(x_0, r) = \{ x \in \mathbb{R} : d(x, x_0) < r \}.$$

Essendo $d(x, x_0) = |x - x_0|$, la disuguaglianza $d(x, x_0) < r$ si può scrivere come $|x - x_0| < r$ che, ricordando le disequazioni con valore assoluto, diventa

$$x_0 - r < x < x_0 + r$$
.

Intorno di un numero reale x_0 , di raggio r, è quindi un intervallo (aperto) che ha il numero x_0 come centro e r come raggio (o semiampiezza), cioè l'intervallo

$$]x_0-r, x_0+r[.$$

Definizione 8.2 (Punto di accumulazione). Dato un insieme $D \subseteq \mathbb{R}$, un punto x_0 si dice punto di accumulazione per D se ogni intorno di x_0 contiene almeno un elemento dell'insieme D diverso da x_0 .

Nella definizione di punto di accumulazione è molto importante il fatto che in ogni intorno di x_0 ci sia almeno un punto di D diverso da x_0 stesso.

Esempio 8.2. Sia $D = [0, 2[\cup \{5\}]$. Il punto 1 è di accumulazione per D perché ogni suo intorno contiene addirittura infiniti punti di D (a sinistra e a destra di 1 stesso). Anche 2 è di accumulazione perché ogni suo intorno contiene infiniti punti di D (solo a sinistra di 2 stesso). Il punto 5 non è di accumulazione perché il suo intorno]4,6[non contiene nessun punto di D diverso da 5 stesso. Si noti che $1 \in D$, mentre $2 \notin D$. I punti di accumulazione di questo insieme sono tutti quelli dell'intervallo chiuso [0,2].

Nel seguito ci interesseranno principalmente insiemi costituiti da intervalli, contenenti o no gli estremi. Per gli intervalli tutti i loro punti (compresi gli eventuali estremi) sono di accumulazione.

8.3 La retta reale estesa

Per velocizzare la trattazione del problema del calcolo dei limiti e per semplificare molte scritture è utile *ampliare* l'insieme dei numeri reali, aggiungendo due ulteriori elementi che chiameremo, anche se in maniera impropria, ancora "punti". Attenzione però: non useremo *mai* per questi due elementi la dicitura "numero", in quanto, come vedremo, il loro comportamento nei confronti delle operazioni elementari è *alquanto strano*.

Definizione 8.3. Chiameremo retta reale estesa, l'insieme

$$\widetilde{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\},$$

cioè l'insieme dei numeri reali a cui siano stati aggiunti altri due elementi, o punti, detti rispettivamente — infinito e + infinito, per i quali stabiliremo le regole di seguito elencate per quanto riquarda l'ordine e le operazioni fondamentali.

Nella retta reale estesa a volte (ma non sempre!!) potremo attribuire un segno anche allo zero, con delle regole che vedremo in seguito: se saremo interessati a questa scelta indicheremo con 0^+ uno "zero positivo", con 0^- uno "zero negativo".

Ordine nella retta reale estesa

Per ogni numero reale a, si pone, per definizione,

$$-\infty < a < +\infty$$
,

ovvero $-\infty$ precede tutti i i numeri reali (è una specie di "primo elemento"), mentre $+\infty$ segue tutti i numeri reali (è una specie di "ultimo elemento").

Operazioni nella retta reale estesa

Le operazioni elementari in uso tra i numeri reali possono essere estese, entro certi limiti, ad operazioni coinvolgenti anche i nuovi simboli di $\pm \infty$, nel modo indicato qui di seguito. Segnaliamo che, scrivendo ∞ , intendiamo riferirci indifferentemente al simbolo $+\infty$ o $-\infty$. Tutte le volte che serve ed è possibile, si deve inoltre applicare la usuale "regola dei segni" per quanto riguarda il prodotto e il quoziente.

- 1. Per ogni numero reale $a, a \pm (+\infty) = \pm \infty$.
- 2. Per ogni numero reale $a, a \pm (-\infty) = \mp \infty$.
- 3. $(+\infty) + (+\infty) = +\infty$.
- $4. (-\infty) + (-\infty) = -\infty.$
- 5. Per ogni numero reale a diverso da 0, $a \cdot (\infty) = \infty$ (con la regola dei segni).
- 6. $(\infty) \cdot (\infty) = \infty$ (con la regola dei segni).
- 7. Per ogni numero reale a, anche 0, $a/\infty = 0$.
- 8. Per ogni numero reale a diverso da 0, $a/0 = \infty$ (con la regola dei segni, se applicabile).
- 9. Per ogni numeri reale a (anche 0), $\infty/a = \infty$ (con la regola dei segni, se applicabile).

Osserviamo che non abbiamo definito le operazioni nei casi seguenti:

- 1. Somma di $(+\infty)$ e $(-\infty)$ (e analoghe che si ottengono usando le regole dei segni: diremo brevemente che abbiamo escluso dalle regole di calcolo il caso $\infty \infty$).
- 2. Prodotto tra 0 e ∞ : diremo brevemente che abbiamo escluso dalle regole di calcolo il caso $0 \cdot \infty$.
- 3. Quoziente tra 0 e 0: diremo brevemente che abbiamo escluso dalle regole di calcolo il caso 0/0
- 4. Quoziente tra ∞ e ∞ : diremo brevemente che abbiamo escluso dalle regole di calcolo il caso ∞/∞ .

Chiameremo queste situazioni forme di indecisione o anche (ma la nomenclatura ci pare oltremodo brutta e inadeguata) forme indeterminate⁽¹⁾.

Intorni dell'infinito

Anche per i due nuovi oggetti aggiunti alla retta reale si introduce il concetto di intorno. Precisamente si dice intorno $di + \infty$ un qualunque intervallo aperto superiormente illimitato: $I_{+\infty} =]a, +\infty[$, oppure $]-\infty, +\infty[$; si dice invece intorno $di -\infty$ un qualunque intervallo aperto inferiormente illimitato: $I_{+\infty} =]-\infty, a[$, oppure $]-\infty, +\infty[$.

8.4 La definizione di limite

Siamo ora pronti per dare una definizione il più possibile formale e rigorosa del concetto di limite per una funzione reale. Come al solito accompagneremo questa definizione con esempi grafici esplicativi. Segnaliamo subito una difficoltà nella definizione: gli esempi che abbiamo fornito implicavano un movimento della x verso un dato valore x_0 ; ebbene, un tale concetto non è formalizzabile in maniera chiara e univoca, e nella definizione che daremo ogni idea di movimento è sparita. È questo il risultato di una lunga discussione tra i matematici all'inizio dell'analisi, discussione che ha condotto alla definizione formale che segue.

Definizione 8.4. Sia data una funzione f, di dominio D, e sia x_0 un punto di accumulazione per D (non essendo escluso che x_0 possa essere uno dei due simboli di infinito). Diremo che l (anche qui non essendo escluso che l possa essere uno dei due simboli di infinito) è il limite di f(x) per x tendente a x_0 , e scriveremo

$$\lim_{x \to x_0} f(x) = l$$

se, scelto un arbitrario intorno I_l di l, è possibile trovare in corrispondenza un opportuno intorno I_{x_0} di x_0 , in modo tale che i valori della funzione calcolati in I_{x_0} , tranne x_0 stesso, cadano in I_l .

Detto in termini meno formali: vale la formula (8.1) se, considerato un segmento arbitrario contenente punti situati nei pressi di l, è possibile trovare un segmento che contenga il punto x_0 , in modo tale che *tutte* le frecce che partono da questi punti cadano solo su punti tra quelli precedentemente scelti, con la clausola che non interessa sapere che cosa succede in corrispondenza del punto x_0 .

Quando l è un numero reale non è restrittivo, e di solito lo si fa sempre, limitarsi a considerare solo intorni circolari di l stesso. È inoltre evidente che ci si può limitare a considerare solo "intorni piccoli" di l. Tenendo conto di questo la definizione di limite può anche essere riformulata come segue

Definizione 8.5. Sia data una funzione f, di dominio D, e sia x_0 un punto di accumulazione per D (non essendo escluso che x_0 possa essere uno dei due simboli di infinito). Diremo che $l \in \mathbb{R}$ è il limite di f(x) per x tendente a x_0 , e scriveremo

$$\lim_{x \to x_0} f(x) = l$$

se, scelto un numero $\varepsilon > 0$ arbitrariamente piccolo, è possibile trovare in corrispondenza un opportuno intorno I_{x_0} di x_0 , in modo tale che per i valori della funzione calcolati in I_{x_0} , tranne x_0 stesso si abbia:

$$l - \varepsilon < f(x) < l + \varepsilon,$$

¹Le definizioni che abbiamo dato relative alle operazioni in $\widetilde{\mathbb{R}}$ servono in realtà a calcolare i limiti: vedremo che solo quando si hanno situazioni del tipo delle quattro chiamate forme di indecisione, il calcolo è, in generale, complesso. Per questo sarebbe forse meglio chiamare queste situazioni "forme difficili", e non forme di indecisione, ma la tradizione ha il suo peso... In ogni caso è bene tenere presente fin da subito che non c'è nulla di indeterminato, solo che in questi casi è complicato decidere che cosa succede.

disuguaglianza che può anche essere scritta nella forma compatta

$$|f(x) - l| < \varepsilon$$
.

Esempio 8.3. Si provi, usando la definizione con l' ε , che

$$\lim_{x \to 1} x + 1 = 2.$$

Si tratta di verificare se la doppia disequazione

$$2 - \varepsilon < x + 1 < 2 + \varepsilon$$

è o no verificata in un intorno di 1. La risoluzione è immediata e si ottiene

$$1 - \varepsilon < x < 1 + \varepsilon$$

che costituisce un intorno (circolare, ma la cosa non è molto importante) di 1.

Esempio~8.4.

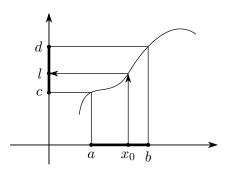


Figura 8.2 Tutte le frecce che partono dal segmento]a,b[cadono nel segmento]c,d[

 $Esempio\ 8.5.$

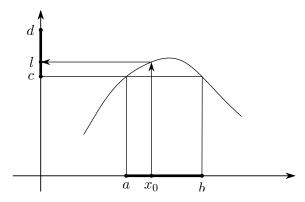


Figura 8.3 Anche in questo caso le frecce che partono dal segmento [a, b[cadono nel segmento]c, d[

Esempio 8.6.

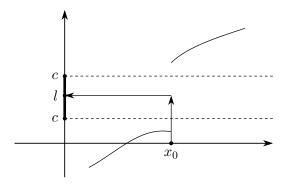


Figura 8.4 In questo caso non è possibile trovare un segmento, circondante x_0 , con le proprietà richieste

Negli esempi relativi alle figure 8.2, 8.3 e 8.4, si è potuto verificare la validità della definizione di limite, usando i grafici delle funzioni. Tutto sarebbe ovviamente più complesso se i grafici non fossero disponibili, e nel seguito faremo qualche cenno sulle tecniche da usare, limitatamente ai casi di nostro interesse.

8.5 Tre teoremi fondamentali sui limiti

Enunciamo tre teoremi fondamentali sui limiti, di cui daremo solo una dimostrazione grafica: non è comunque difficile tradurre in un discorso formale e rigoroso quanto diremo.

Teorema 8.6 (Unicità del limite). Se una funzione ha un limite l, per x tendente a x_0 , tale limite è unico.

Dimostrazione. Si supponga che ci siano due limiti diversi, l_1 e l_2 e si esamini la figura che segue.

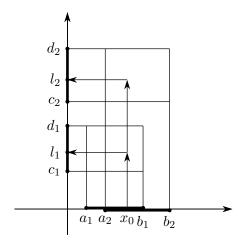


Figura 8.5 Unicità del limite

È chiaro che le frecce lanciate dai punti tra a_2 e b_1 dovrebbero cadere contemporaneamente in $|c_1, d_1|$ e $|c_2, d_2|$, cosa palesemente impossibile.

Teorema 8.7 (Permanenza del segno). Se una funzione ha un limite positivo, per x tendente a x_0 , la funzione è positiva in un intorno del punto x_0 . Discorso complementare se il limite è negativo.

Dimostrazione. Supponiamo che il limite l sia positivo, ed esaminiamo la figura che segue, che non ha bisogno di commenti.

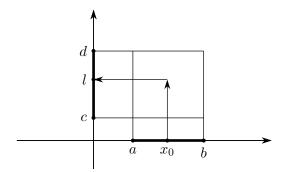


Figura 8.6 Permanenza del segno

Osserviamo esplicitamente che se

$$\lim_{x \to x_0} f(x) = 0 \,,$$

allora la funzione può essere positiva nei pressi di x_0 , e allora diremo che il limite è "zero positivo", o 0^+ , negativa nei pressi di x_0 , e allora diremo che il limite è "zero negativo", o 0^- , o infine può cambiare di segno nei pressi di x_0 e allora diremo che il limite è 0, senza precisare "positivo" o "negativo". I tre grafici della figura seguente illustrano tre situazioni possibili.

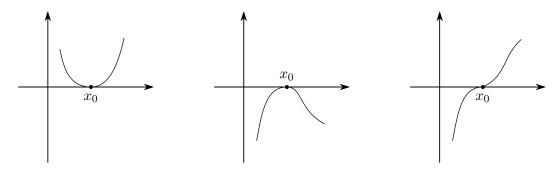


Figura 8.7 0⁺, 0⁻, 0 "senza segno"

Limite destro e limite sinistro

Molto spesso, nei problemi di limite, è utile limitarsi a considerare solo le x del dominio di una funzione che si trovano "a destra" di x_0 , oppure "a sinistra", di x_0 . Parleremo allora di *limite destro* e *limite sinistro*, e scriveremo

$$\lim_{x \to x_0^+} f(x) = l \quad \text{oppure} \quad \lim_{x \to x_0^-} f(x) = l.$$

Se riesaminiamo il terzo grafico della precedente figura 8.7 alla luce di questa definizione, potremo dire che la funzione ha limite 0^- a sinistra e 0^+ a destra. Purtroppo però, quando una funzione ha limite 0 "senza segno", non è affatto detto che il limite sia 0^- a sinistra e 0^+ a destra o viceversa: le situazioni possono essere molto più complesse. Proponiamo solo un esempio grafico, senza commenti, relativo alla funzione

$$f(x) = x \sin \frac{1}{x}.$$

Luciano Battaia 65

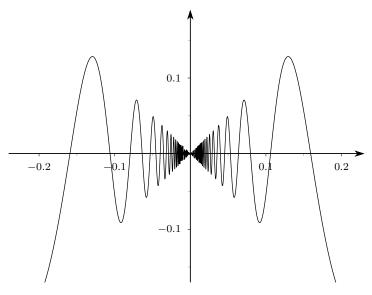


Figura 8.8 La funzione $x \sin \frac{1}{x}$

Teorema 8.8 (Del confronto o dei due carabinieri). Se due funzioni f e g hanno lo stesso limite l per x tendente a x_0 , anche una funzione h che sia compresa tra le due ha lo stesso limite.

Dimostrazione. È sufficiente esaminare la figura che segue.

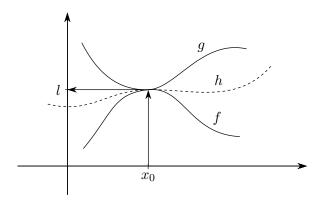


Figura 8.9 Il teorema dei due carabinieri

8.6 Funzioni continue

Definizione 8.9. Sia data una funzione f, di dominio D, e sia x_0 un punto di accumulazione per D, appartenente a D. La funzione f si dice continua in x_0 se

$$\lim_{x \to x_0} f(x) = f(x_0) \,.$$

Se invece x_0 è isolato per D, la funzione è per definizione continua in x_0 .

È come dire che una funzione è continua se il calcolo del limite (quando ha senso) si può fare semplicemente sostituendo x_0 al posto di x nell'espressione della funzione: una bella facilitazione, se si riesce a scoprire a priori quali sono le funzioni continue!

66 Luciano Battaia

Si noti che per le successioni il problema della continuità non si pone: il dominio delle successioni è sempre costituito solo da punti isolati.

Si dimostra, non senza qualche difficoltà, che tutte le funzioni elementari che abbiamo considerato sono continue in tutti i punti del loro dominio.

È parimenti possibile dimostrare che anche le altre funzioni elementari che non abbiamo considerato sono continue in tutti i punti del loro dominio: si tratta di tutte le funzioni polinomiali, razionali fratte, contenenti radicali, potenze con esponente di vario tipo, esponenziali, logaritmiche, trigonometriche, e quelle che si ottengono per somma, sottrazione, prodotto, quoziente e composizione di queste in tutti i modi possibili. Per ottenere funzioni non continue, al livello del nostro corso, bisogna ricorrere alle funzioni definite a pezzi, come la funzione, detta funzione segno, o signum, definita come segue:

(8.3)
$$\operatorname{sgn}(x) = \begin{cases} -1, & \text{se } x < 0 \\ 0, & \text{se } x = 0 \\ 1, & \text{se } x > 0 \end{cases}$$

il cui grafico è riportato nella figura che segue.

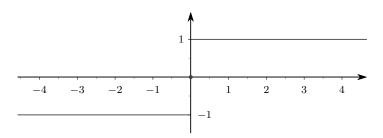


Figura 8.10 La funzione segno

Questa funzione non è continua nel punto 0 del suo dominio.

In primissima approssimazione si può dire che una funzione è continua se il suo grafico non presenta "strappi": l'affermazione andrebbe però precisata in dettaglio, ma ciò esula dagli scopi di questo corso.

8.7 Il calcolo dei limiti

Per il calcolo dei limiti delle funzioni continue, per x tendente a punti del dominio, non ci sono problemi, in quanto si può "eseguire una semplice sostituzione". Negli altri casi esistono numerose strategie e noi esamineremo in questo corso solo le più semplici.

Cominciamo con l'elencare alcuni risultati relativi alle funzioni elementari, nel caso di limiti per x tendente a punti non appartenenti al dominio; la quasi totalità di questi risultati sono intuitivi o di immediata verifica.

1.
$$\lim_{x \to +\infty} x = \pm \infty$$
.

2.
$$\lim_{x \to +\infty} a^x = \begin{cases} +\infty, & \text{se } a > 1 \\ 0, & \text{se } 0 < a < 1 \end{cases}.$$

3.
$$\lim_{x \to -\infty} a^x = \begin{cases} 0, & \text{se } a > 1 \\ +\infty, & \text{se } 0 < a < 1 \end{cases}.$$

Poiché saremo interessati principalmente al caso che la base delle funzioni esponenziali sia

il numero e, scriveremo brevemente questi risultati nel seguente modo:

$$e^{+\infty} = +\infty$$
 , $e^{-\infty} = 0$.

4.
$$\lim_{x \to +\infty} \log_a x = \left\{ \begin{array}{ll} +\infty, & \text{se} \quad a > 1 \\ -\infty, & \text{se} \quad 0 < a < 1 \end{array} \right..$$

5.
$$\lim_{x \to 0^+} \log_a x = \left\{ \begin{array}{ll} -\infty, & \text{se} \quad a > 1 \\ +\infty, & \text{se} \quad 0 < a < 1 \end{array} \right. .$$

Poiché saremo interessati principalmente al caso che la base delle funzioni logaritmo sia il numero e, scriveremo brevemente questi risultati nel seguente modo:

$$\ln(+\infty) = +\infty$$
 , $\ln(0^+) = -\infty$.

Successivamente riportiamo il risultato di alcuni teoremi che riguardano il calcolo di limiti importanti (limiti notevoli).

1. $\lim_{x \to \pm \infty} \left(1 + \frac{1}{x}\right)^x = e$. A proposito di questo fondamentale limite si noti che esso si riferisce a una funzione esponenziale in cui sia la base che l'esponente sono variabili. Per trattare queste funzioni è, in generale, conveniente usare la seguente formula, conseguenza immediata della definizione di logaritmo:

(8.4)
$$(f(x))^{g(x)} = e^{g(x) \ln f(x)},$$

formula che permette di ottenere una funzione esponenziale vera e propria, cioè in cui solo l'esponente è variabile.

2.
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$
.

3.
$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1.$$

Successivamente segnaliamo l'uso delle regole di calcolo sulla retta reale estesa, regole di calcolo che sono state proprio definite nella previsione di un loro uso nel calcolo dei limiti: ognuna di quelle regole costituisce in realtà un apposito teorema sui limiti. Per esempio la regola

$$\forall a \in \mathbb{R}, \ a + (+\infty) = +\infty$$

traduce in formule la tesi del seguente teorema: Date due funzioni f e g, tali che

$$\lim_{x \to x_0} f(x) = a \in \mathbb{R} \quad e \quad \lim_{x \to x_0} g(x) = +\infty,$$

si ha che

$$\lim_{x \to x_0} f(x) + g(x) = +\infty.$$

Chiameremo teoremi sull'algebra dei limiti l'insieme dei teoremi espressi mediante le regole di calcolo sulla retta reale estesa: in sostanza queste regole esprimono il fatto che i limiti si comportano bene rispetto alle operazioni fondamentali, tranne qualche caso...

Naturalmente i casi più interessanti saranno proprio quelli in cui quelle regole di calcolo non sono direttamente applicabili: in quei casi occorrerà applicare opportune strategie, di cui esamineremo solo alcuni esempi semplici. Segnaliamo comunque nuovamente che il problema del calcolo dei limiti è in generale un problema molto complesso che spesso richiede lunghe e faticose elaborazioni (non alla portata del nostro corso).

8.8 Ordini di infinito

Uno dei problemi che restano sospesi nel calcolo dei limiti è il caso in cui si presenti la situazione (forma di indecisione) $\infty - \infty$. Per esempio, nel calcolare

$$\lim_{x \to +\infty} (x^3 - x^2)$$

si ha proprio questo caso. Si può procedere nel seguente modo:

$$\lim_{x \to +\infty} (x^3 - x^2) = \lim_{x \to +\infty} x^3 \left(1 - \frac{1}{x} \right) = +\infty \left(1 - \frac{1}{+\infty} \right) = +\infty (1 - 0) = +\infty.$$

Questo risultato si può interpretare nel seguente modo: la funzione x^3 tende all'infinito più rapidamente della funzione x^2 (o anche è un infinito più forte di x^2 , o ancora è un infinito di ordine superiore rispetto a x^2) e quindi, dovendo fare la differenza tra un infinito più forte e una più debole, quello più debole non conta, può essere trascurato.

$$\lim_{x \to +\infty} (x^3 - x^2) = \lim_{x \to +\infty} x^3 = +\infty.$$

Anche se abbiamo espresso questo fatto con un linguaggio del tutto intuitivo, la cosa può essere resa rigorosa: gli infiniti più deboli *possono essere trascurati in una somma* (agli effetti del calcolo dei limiti, non in assoluto!).

Per poter applicare questo fatto occorre naturalmente avere una scala degli infiniti, in modo da sapere quali sono più forti e quali più deboli. Senza entrare nei dettagli, ai fini del nostro corso ci basterà sapere che, per $x \to +\infty$, i seguenti infiniti sono disposti in ordine crescente.

(8.5)
$$\ln x, \sqrt[3]{x}, \sqrt{x}, x, x^2, x^3, \dots, 2^x, e^x, 3^x, \dots, e^{x^2}, e^{x^3}, \dots$$

È altresì facile mostrare che, in una somma, si possono trascurare, rispetto agli infiniti, anche le costanti, le funzioni che tendono a zero o a un valore finito, le funzioni che non hanno limite, ma rimangono limitate, come le funzioni seno e coseno per $x \to +\infty$.

Un'ulteriore applicazione del concetto di ordine di infinito si ha nel calcolo di limiti in cui si giunge alla forma di indecisione ∞/∞ . In questo caso

- se il numeratore è un infinito di ordine superiore, allora il rapporto tende all'infinito;
- se il numeratore è un infinito di ordine inferiore, allora il rapporto tende a zero.

Si potrebbero fare discorsi simili per le quantità che tendono a zero, in quanto anche 0 /o è una forma di indecisione, ma la cosa ha meno interesse (ed è sensibilmente più complessa) per il nostro corso e non ne parleremo.

Esempio 8.7.
$$\lim_{x \to +\infty} \frac{x^3 - x^2 + x - 1}{3x^3 + x} = \lim_{x \to +\infty} \frac{x^3}{3x^3} = \frac{1}{3}$$
.

Esempio 8.8.
$$\lim_{x \to +\infty} \frac{e^x - \ln x}{e^{x^2} - r^{33}} = \lim_{x \to +\infty} \frac{e^x}{e^{x^2}} = 0.$$

8.9 Qualche esempio di calcolo dei limiti

Esempio 8.9. Calcolare

$$\lim_{x \to 1^+} \frac{1}{\ln x} \,.$$

Si ha

$$\ln 1^+ = 0^+ \Rightarrow \lim_{x \to 1^+} \frac{1}{\ln x} = \frac{1}{0^+} = +\infty.$$

Esempio 8.10. Calcolare

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} \,.$$

Si ha

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \frac{0}{0},$$

per cui i calcoli sulla retta reale estesa non possono essere usati. Osserviamo però che

$$x^3 - 1 = (x - 1)(x^2 + x + 1)$$
,

da cui

$$\lim_{x \to 1} \frac{x^3 - 1}{x - 1} = \lim_{x \to 1} \frac{\cancel{(x - 1)}(x^2 + x + 1)}{\cancel{x - 1}} = \lim_{x \to 1} x^2 + x + 1 = 3.$$

Esempio 8.11. Calcolare

$$\lim_{x \to 2^+} \frac{1 - x}{(x - 2)^2} \,.$$

Si ha

$$\lim_{x\to 2^+}\frac{1-x}{(x-2)^2}=\frac{-1}{0^+}=-\infty\,.$$

Esempio 8.12. Calcolare

$$\lim_{x \to 2^{-}} \frac{1 - x}{(x - 2)^2} \,.$$

Si ha

$$\lim_{x\to 2^-}\frac{1-x}{(x-2)^2}=\frac{-1}{0^+}=-\infty\,.$$

Esempio 8.13. Calcolare

$$\lim_{x\to-\infty} xe^x$$
.

La situazione è leggermente diversa da quelle esaminate prima, in quanto si giunge alla forma di indecisione $0 \cdot \infty$. Si può però scrivere il limite come segue

$$\lim_{x \to -\infty} \frac{x}{\mathrm{e}^{-x}} \,.$$

Se ora si tiene conto che, per $x \to -\infty$, e^{-x} è esattamente come e^x per $x \to +\infty$, si conclude che il limite vale 0 (l'infinito del numeratore è più debole di quello del denominatore).

9 Derivate per funzioni di una variabile

9.1 Derivata e tangente al grafico di una funzione

Sia data, nel piano cartesiano, una curva di equazione y = f(x) (cioè il grafico di una funzione reale di variabile reale). Su questa curva fissiamo un punto $P(x_P, y_P) = (x_P, f(x_P))$. Il problema di cui vogliamo occuparci è il seguente: è possibile dare una definizione formalmente ineccepibile di tangente alla curva, e, in caso di risposta affermativa, è possibile costruire un algoritmo generale per trovare l'equazione di questa retta tangente (anzi, ci basterà il coefficiente angolare, perché ovviamente la tangente, se esiste, passerà per P).

Ricordiamo che, se si hanno due punti $P(x_P, y_P)$ e $Q(x_Q, y_Q)$, aventi diversa ascissa, cioè non appartenenti a una retta verticale, la retta per i due punti ha coefficiente angolare

$$m_{PQ} = \frac{y_Q - y_P}{x_Q - x_P} = \frac{\Delta y}{\Delta x} \,.$$

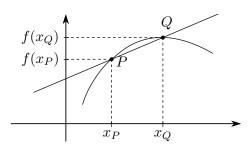


Figura 9.1 Secante a una curva per due punti

Se ora consideriamo una funzione di equazione y = f(x) e un punto $P(x_P, f(x_P))$, per trovare la tangente in P possiamo procedere prendendo un secondo punto $Q(x_Q, f(x_Q))$ sul grafico e tracciando la retta per P e Q, detta retta secante, la quale avrà coefficiente angolare

(9.1)
$$m_{PQ} = \frac{y_Q - y_P}{x_Q - x_P} = \frac{f(x_Q) - f(x_P)}{x_Q - x_P} = \frac{\Delta f}{\Delta x}.$$

Definizione 9.1. Il rapporto $\Delta f/\Delta x$, definito nella formula (9.1) si chiama rapporto incrementale della funzione f relativo al punto x_P e all'incremento $h = x_Q - x_P = \Delta x$.

Se ora prendiamo il punto Q "sempre più vicino a P", la secante si avvicina sempre più a quella che, intuitivamente, ci pare la miglior candidata a essere definita retta tangente.

In generale indicheremo con x_0 , o genericamente con x, l'ascissa del punto P e con $x_0 + h$ l'ascissa del punto Q. Il rapporto incrementale si scriverà allora

(9.2)
$$\frac{\Delta f}{\Delta x} = \frac{f(x_0 + h) - f(x_0)}{h}.$$

Definizione 9.2. Data una funzione di equazione y = f(x), definita in tutto un intorno I_{x_0} di un punto x_0 del dominio, si dice derivata prima della funzione f nel punto x_0 , e si indica con

$$f'(x_0)$$
, oppure $Df(x_0)$,

il limite, se esiste ed è finito, del rapporto incrementale, al tendere di Q a P

(9.3)
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

In questo caso (cioè se il limite (9.3) esiste finito), la funzione si dice derivabile in x_0 .

Esempio 9.1. Calcoliamo l'equazione della retta tangente al grafico della funzione $f(x) = e^x$, nel punto di ascissa 1. Per il coefficiente angolare si ha

$$\lim_{h \to 0} \frac{\mathrm{e}^{1+h} - \mathrm{e}}{h} = \lim_{h \to 0} \frac{\mathrm{e}^1 \mathrm{e}^h - \mathrm{e}}{h} = \lim_{h \to 0} \frac{\mathrm{e} \, \mathrm{e}^h - \mathrm{e}}{h} = \lim_{h \to 0} \mathrm{e} \, \frac{\mathrm{e}^h - 1}{h} = \mathrm{e} \cdot 1 = \mathrm{e} \, .$$

Se teniamo conto che la retta deve passare per P(1,e), otteniamo

$$y - e = e(x - 1) \Rightarrow y = ex$$
.

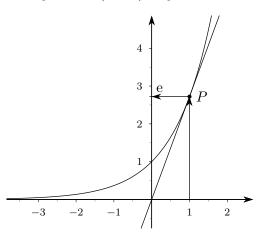


Figura 9.2 Tangente alla funzione e^x nel punto di ascissa 1

In generale non è indispensabile impostare il procedimento di calcolo del limite sulla base di un punto x_0 fissato: è possibile ricavare il coefficiente angolare della retta tangente a una curva di equazione y = f(x) in un punto di ascissa x_0 qualsiasi. Così facendo si otterrà una espressione dipendente da x_0 , e non più un singolo valore numerico. Questa espressione si chiama la funzione derivata prima, o semplicemente funzione derivata o a volte addirittura solo derivata. In generale, se non c'è possibilità di equivoco, in questi casi si scrive semplicemente x al posto di x_0 .

Definizione 9.3. Data una funzione f, definita in un intervallo I, si dice funzione derivata prima di f la funzione f' espressa da

(9.4)
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h},$$

nei punti di ascissa $x \in I$ per i quali tale limite esiste finito.

Esempio 9.2. Riprendiamo in esame la funzione esponenziale dell'esempio precedente, e calcoliamo la derivata in un punto x generico:

$$\lim_{h\to 0}\frac{\mathrm{e}^{x+h}-\mathrm{e}^x}{h}=\lim_{h\to 0}\frac{\mathrm{e}^x\mathrm{e}^h-\mathrm{e}^x}{h}=\lim_{h\to 0}\mathrm{e}^x\,\frac{\mathrm{e}^h-\mathrm{e}^x}{h}=\mathrm{e}^x\cdot 1=\mathrm{e}^x\,.$$

Naturalmente se al posto di x mettiamo il numero 1, come nell'esempio precedente, otteniamo nuovamente il numero e.

Esempio 9.3. Calcolare la derivata di $f(x) = x^3$. Si ha

$$D(x^3) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} = \lim_{h \to 0} 3x_2 + 3xh + h^2 = 3x^2.$$

Ribadiamo che questo risultato significa che

in corrispondenza all'ascissa

il grafico di $f(x) = x^3$ ammette retta tangente con coefficiente angolare

Anche per le derivate, trattandosi di un procedimento di limite, si potranno considerare separatamente il limite destro e il limite sinistro: si parlerà in questo caso di derivata destra e derivata sinistra.

Esempio 9.4. Sia data la funzione f(x) = |x| e vediamo cosa succede per x = 0, separando il caso in cui per l'incremento h si ha h < 0 $(h \to 0^-)$, da quello in cui si ha h > 0 $(h \to 0^+)$:

$$\lim_{h \to 0^{-}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{-}} \frac{|h|}{h} = \lim_{h \to 0^{-}} \frac{-h}{h} = -1,$$

$$\lim_{h \to 0^{+}} \frac{|0+h| - |0|}{h} = \lim_{h \to 0^{+}} \frac{|h|}{h} = \lim_{h \to 0^{+}} \frac{h}{h} = 1.$$

Questo risultato ha una evidente interpretazione grafica: la tangente sulla sinistra di 0 ha coefficiente angolare -1, sulla destra 1:

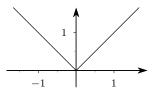


Figura 9.3 La funzione valore assoluto

In situazioni come quella appena vista si parla di *punto angoloso*: la derivata destra e quella sinistra sono entrambe finite, ma diverse.

La derivabilità di una funzione in un punto è legata alla continuità. Si dimostra infatti il seguente teorema:

Teorema 9.4. Se una funzione è derivabile in un punto x_0 è anche continua in x_0 .

Non è vero il viceversa di questo teorema: una funzione può essere continua senza essere derivabile, come dimostra l'esempio della funzione valore assoluto.

Esempio 9.5. Nella definizione di derivata abbiamo chiesto che il limite del rapporto incrementale fosse finito: ci sono diversi motivi per fare questo (e la maggior parte di questi esulano dagli scopi di questo corso). Segnaliamo solo che si può presentare il caso che la tangente al grafico

di una funzione può benissimo essere una retta verticale e, si sa, le rette verticali hanno la cattiva abitudine di non avere un coefficiente angolare. Come esempio consideriamo la funzione $f(x) = \sqrt[3]{x}$ e calcoliamo il limite del rapporto incrementale nell'origine.

$$\lim_{h \to 0} \frac{\sqrt[3]{0+h} - \sqrt[3]{0}}{h} = \lim_{h \to 0} \frac{\sqrt[3]{h}}{h} = \lim_{h \to 0} \frac{\sqrt[3]{h}}{\sqrt[3]{h^3}} = \lim_{h \to 0} \sqrt[3]{\frac{h}{h^3}} = \lim_{h \to 0} \frac{1}{\sqrt[3]{h^2}} = \frac{1}{0^+} = +\infty$$

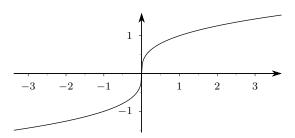


Figura 9.4 La funzione $f(x) = \sqrt[3]{x}$

Nella tabella 9.1 sono proposte, senza dimostrazione, le regole di derivazione più importanti, riguardanti la somma, il prodotto, ecc. di funzioni derivabili.

Funzione	Derivata
$k \cdot f(x)$	$k \cdot f'(x)$
f(x) + g(x)	f'(x) + g'(x)
$f(x) \cdot g(x)$	$f'(x) \cdot g(x) + f(x) \cdot g'(x)$
$\frac{1}{f(x)}$	$-\frac{f'(x)}{f^2(x)}$
$\frac{f(x)}{g(x)}$	$\frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)}$
f(g(x))	$f'(g(x)) \cdot g'(x)$

Tabella 9.1 Regole di derivazione

È opportuno evidenziare in dettaglio l'uso dell'ultima formula della tabella 9.1, che si riferisce alla regola di derivazione della composta di due funzioni. Come al solito ragioniamo su un esempio. Abbiamo già provato, in un esempio nella pagina 72 e nell'esempio successivo, che la derivata di $f(x) = e^x$ è $f'(x) = e^x$, e che la derivata di $g(x) = x^3$ è $g'(x) = 3x^2$. Se ora consideriamo la composta delle due funzioni

$$h(x) = f(g(x)) = e^{g(x)} = e^{x^3}$$

la derivata sarà

$$h'(x) = f'(q(x)) \cdot q'(x) = e^{g(x)} \cdot q'(x) = e^{x^3} 3x^2 = 3x^2 e^{x^3}$$
.

Nella tabella 9.2 proponiamo le regole per derivare le funzioni di uso più comune, ancora senza dimostrazione.

Funzione	Derivata
k	0
$x^n, \ n \in \mathbb{N} \setminus \{0\}, \ x \in \mathbb{R}$	nx^{n-1}
$x^n, \ n \in \mathbb{Z}, \ n < 0, \ x \in \mathbb{R} \setminus \{0\}$	nx^{n-1}
$x^a, a \in \mathbb{R}, x > 0$	ax^{a-1}
a^x	$a^x \cdot \ln a$
e^x	e^x
$\log_a x $	$\frac{1}{x} \cdot \log_a e$
$\ln x$	$\frac{1}{x}$
$f^a(x)$	$nf^{a-1}(x) \cdot f'(x)$
$a^{f(x)}$	$a^{f(x)}(\ln a)f'(x)$
$\mathrm{e}^{f(x)}$	$e^{f(x)}f'(x)$
$\log_a f(x)$	$\frac{f'(x)}{f(x)}\log_a \mathbf{e}$
$\ln f(x)$	$\frac{f'(x)}{f(x)}$
$f(x)^{g(x)} = e^{g(x)\ln f(x)}$	$e^{g(x)\ln f(x)} \left(g'(x)\ln f(x) + g(x) \frac{f'(x)}{f(x)} \right)$

Tabella 9.2 Derivate delle funzioni più comuni

Si noti che la regola di derivazione delle potenze è sempre la stessa, quello che cambia è il dominio della funzione potenza. La regola che riguarda il caso in cui l'esponente sia un numero reale qualunque va bene anche per il caso dei radicali, e qui bisogna tenere conto che se l'indice è pari, la x deve essere maggiore di 0, se l'indice è dispari, la x può essere anche minore di 0. Esattamente come succede nel caso della radice cubica, se x=0 le funzioni radice non risultano derivabili⁽¹⁾. Riportiamo in dettaglio le formule nei due casi che più ci interesseranno, cioè quello della radice quadrata e della radice cubica.

$$f(x) = \sqrt{x}$$
, $f'(x) = \frac{1}{2\sqrt{x}}$; $f(x) = \sqrt[3]{x}$, $f'(x) = \frac{1}{3\sqrt[3]{x^2}}$.

Esempio 9.6. Calcolare la derivata di

$$(x^2+5)^{27}$$
.

Si ha

$$((x^2+5)^{27})' = 27(x^2+5)^{26}(2x) = 54x(x^2+5)^{26}.$$

¹Si può osservare che il caso delle potenze è abbastanza complesso: prestare la massima attenzione!

Esempio 9.7. Calcolare la derivata di

$$\frac{x^2}{x^3 + x^2 - 1}$$
.

Si ha

$$\left(\frac{x^2}{x^3 + x^2 - 1}\right)' = \frac{2x(x^3 + x^2 - 1) - x^2(3x^2 + 2x)}{(x^3 + x^2 - 1)^2} = \dots$$

9.2 Derivate successive

Poiché la funzione derivata prima è a sua volta una funzione, ci si può chiedere se essa sia derivabile oppure no. Nei casi delle funzioni elementari che a noi interessano la risposta è affermativa e conduce al concetto di derivata seconda, terza, ecc., indicate con i simboli

$$f''(x) \left(\operatorname{D}^2(f(x)) \right), \quad f'''(x) \left(\operatorname{D}^3(f(x)) \right), \ f^{\text{\tiny 1}v}(x) \left(\operatorname{D}^4(f(x)) \right), \ f^{(n)}(x) \left(\operatorname{D}^{(n)}(f(x)) \right)$$

Esempio 9.8. Calcolare la derivata 3^a di $f(x) = e^x$. Si ha, facilmente, $f'''(x) = e^x$.

Esempio 9.9. Calcolare le derivate prima, seconda, ecc., (n+1)-esima di $f(x)=x^n$. Si ha

$$f'(x) = nx^{n-1}, \ f''(x) = n(n-1)x^{n-2}, \ f'''(x) = n(n-1)(n-2)x^{n-3},$$

..., $f^{(n)}(x) = n(n-1) \cdots 1 = n!, \ f^{n+1}(x) = 0.$

9.3 Esercizi

Esercizio 9.1. Calcolare le derivate delle seguenti funzioni.

- 1. $\sqrt{x} + 2x^5$;
- 2. $x^3 3x^2 2$:
- 3. $\ln x x^4 + 4x^2 x$:
- 4. $e^x 2 x^6$:
- 5. $e^x \cdot x^5$:
- 6. $-\sqrt{x}(x^3-x^2+x)$;
- 7. $e^x \ln x$;
- 8. $\ln(x)e^x(x^2+x+1)$;
- 9. $\frac{x-1}{x+3}$;
- $10. \ \frac{x-x^2}{\ln x + x};$
- $11. \ \frac{x}{2^x + \sqrt{x}}.$

10 Grafici di funzioni di una variabile

L'introduzione del concetto di derivata si rivela un importante successo per risolvere il problema di studiare le proprietà delle funzioni, fino a giungere al tracciamento di un grafico significativo. La parte dell'analisi che studia le proprietà delle funzioni che si possono ricavare sulla base delle loro derivate si chiama calcolo differenziale.

10.1 Massimi e minimi per una funzione

Definizione 10.1. Sia data una funzione f, definita in un insieme D. Un punto $x_0 \in D$ si dice punto di massimo relativo se esiste un intorno di x_0 tale che per tutti i punti dell'intorno si abbia che

$$f(x) \le f(x_0);$$

 $x_0 \in D$ si dice invece punto di minimo relativo se esiste un intorno di x_0 tale che per tutti i punti dell'intorno si abbia che

$$f(x) \ge f(x_0)$$
.

Se le disuguaglianze valgono in senso stretto (senza gli uguali), allora i punti si chiamano di massimo o minimo relativo proprio.

Il valore $f(x_0)$ si dice un (valore) massimo o minimo relativo per la funzione.

Se le disuguaglianze considerate valgono in tutto il dominio, si parla di punto di massimo, o minimo, assoluto e di (valore) massimo o minimo assoluto

La ricerca dei massimi e minimi relativi o assoluti per una funzione riveste grande importanza nelle applicazioni. Siamo particolarmente interessati a questa ricerca nel caso di funzioni derivabili, definite in un intervallo I. In questo caso valgono i seguenti risultati, che sono sostanzialmente delle conseguenze dei teoremi fondamentali che abbiamo considerato.

- 1. Se un punto x_0 è, per una funzione f, di massimo o minimo relativo *interno* ad I, allora $f'(x_0) = 0$.
- 2. Se una funzione è crescente a sinistra di x_0 e decrescente a destra di x_0 , x_0 è di massimo relativo
- 3. Se una funzione è decrescente a sinistra di x_0 e crescente a destra di x_0 , x_0 è di minimo relativo.

L'esperienza ci aiuterà a trattare anche qualche caso più complesso di funzioni che non siano derivabili e/o continue in qualche punto. Segnaliamo comunque che in casi come questi possono anche presentarsi situazioni poco intuitive, come per esempio che una funzione sia crescente sia a sinistra che a destra di un punto e che in quel punto ci sia un minimo, o un massimo. Si vedano gli esempi grafici che seguono.

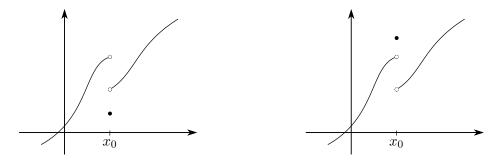


Figura 10.1 Funzioni crescenti a sinistra e a destra di un punto, con minimo o massimo nel punto

Sulla scorta dei due esempi proposti, il lettore è invitato provare a costruire graficamente altre situazioni "patologiche".

In situazioni standard potremo procedere come nell'esempio che segue.

Esempio 10.1. Per la funzione $f(x) = x^3 - 3x^2$ si ha $f'(x) = 3x^2 - 6x$, da cui f'(x) > 0 se x < 0 oppure x > 2, f'(x) < 0 se 0 < x < 2, f'(x) = 0 se x = 0 oppure x = 2. Riporteremo questi risultati in un grafico come il seguente.

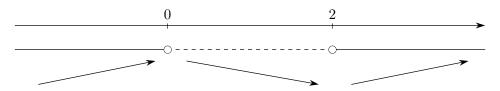


Figura 10.2 Crescenza e decrescenza di una funzione

Se teniamo conto che

$$\lim_{x \to +\infty} f(x) = +\infty, \quad \lim_{x \to -\infty} f(x) = -\infty, \quad f(0) = 0, \quad f(2) = -4,$$

possiamo ben renderci conto dell'andamento grafico della funzione stessa:

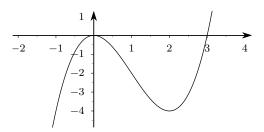


Figura 10.3 Grafico della funzione $f(x) = x^3 - 3x^2$

Un risultato di grande importanza per la ricerca dei massimi e minimi assoluti è costituito dal seguente teorema.

Teorema 10.2 (Teorema di Weierstrass). Se f(x) è una funzione definita e continua in un insieme chiuso e limitato, allora il massimo assoluto e il minimo assoluto esistono sicuramente.

Questo teorema è importante perché se siamo sicuri che il massimo e minimo ci sono, gli sforzi per trovarli saranno sicuramente giustificati.

10.2 Funzioni convesse e concave

Definizione 10.3. Una funzione f si dice convessa in un intervallo I se presi comunque due punti x_1 e x_2 di I e considerato il segmento di estremi $P_1 = (x_1, f(x_1))$ e $P_2 = (x_2, f(x_2))$, la parte del grafico di f coorrispondente all'intervallo $[x_1, x_2]$ sta tutta al di sotto di questo segmento.

Definizione 10.4. Una funzione f si dice concava in un intervallo I se presi comunque due punti x_1 e x_2 di I e considerato il segmento di estremi $P_1 = (x_1, f(x_1))$ e $P_2 = (x_2, f(x_2))$, la parte del grafico di f coorrispondente all'intervallo $[x_1, x_2]$ sta tutta al di sopra di questo segmento.

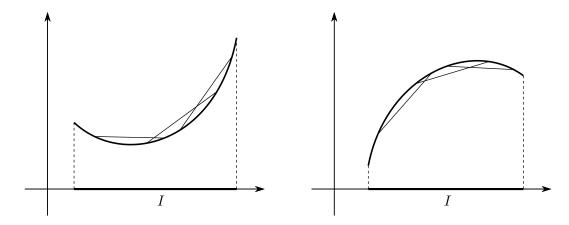


Figura 10.4 Funzioni convesse e concave in un intervallo

Per le funzioni derivabili due volte è possibile decidere se sono convesse o concave: si prova infatti che se una funzione ha f''(x) > 0 in un intervallo I, allora è convessa in I, se invece ha f''(x) < 0 in I, allora è concava in I.

Definizione 10.5. Sia f una funzione derivabile in un intervallo I e x_0 un punto di I. Se esistono due intervalli del tipo $[x_1, x_0]$ e del tipo $[x_0, x_2]$ tali che la funzione sia convessa nel primo e concava nel secondo, oppure concava nel primo e convessa nel secondo, allora il punto x_0 si dice punto di flesso o punto di inflessione per il grafico di f. La tangente al grafico nel punto $(x_0, f(x_0))$ si dice tangente inflessionale.

È (abbastanza) evidente che se una funzione è derivabile due volte, la sua derivata seconda vale 0 in un punto di flesso.

La determinazione degli intervalli in cui una funzione è convessa oppure concava, e dei punti di flesso, migliora sensibilmente le informazioni sull'andamento grafico di una funzione, come mostra l'esempio che segue.

Esempio 10.2. Utilizzando le nozioni fin qui apprese, determiniamo i massimi, i minimi, i flessi e gli intervalli di crescenza, decrescenza, concavità, convessità della funzione

$$f(x) = \frac{x}{e^x},.$$

Vogliamo inoltre tracciare un abbozzo del grafico, tenendo anche conto delle ulteriori informazioni che possiamo ricavare dal calcolo di opportuni limiti, e magari determinando esplicitamente alcuni punti significativi per i quali il grafico deve passare.

Cominciamo con il calcolare le derivate prima e seconda di f.

$$f'(x) = \frac{1 \cdot e^x - x \cdot e^x}{(e^x)^2} = \frac{e^x (1 - x)}{(e^x)^2} = \frac{\mathscr{E}(1 - x)}{(e^x)^2} = \frac{1 - x}{e^x};$$
$$f''(x) = \frac{-1 \cdot e^x - (1 - x)e^x}{(e^x)^2} = \frac{\mathscr{E}(x - 2)}{(e^x)^2} = \frac{x - 2}{e^x}.$$

Se teniamo conto che e^x è una quantità sempre positiva, possiamo facilmente concludere che la derivata prima è positiva (funzione crescente) per x < 1, negativa (funzione decrescente) per x > 1, nulla (tangente orizzontale) per x = 1, dove avrà un punto di massimo (relativo) in quanto è prima crescente e poi decrescente (naturalmente la cosa è vera perchè la funzione non presenta "strappi" nel suo grafico!); per la derivata seconda si ha invece che è positiva (funzione convessa) per x > 2, negativa (funzione concava) per x < 2, nulla per x = 2, dove ha un punto di flesso in quanto a sinistra di 2 è concava, a destra è convessa. L'ordinata corrispondente all'ascissa 2 è $^2/e^2 \simeq 0.27$, mentre la derivata per x = 2 vale $^{-1}/e^2 \simeq -0.14$: questo ci consente di scrivere subito l'equazione della tangente inflessionale,

$$y - f(2) = f'(2)(x - 2)$$
, ovvero $y - \frac{2}{e^2} = \frac{-1}{e^2}(x - 2)$

Per raffinare ulteriormente le informazioni a nostra disposizione relative al grafico di f calcoliamo anche i limiti per x tendente a $-\infty$ e a $+\infty$ per sapere "da dove parte" e "dove arriva" il grafico stesso.

$$\lim_{x \to -\infty} \frac{x}{e^x} = \frac{-\infty}{0^+} = -\infty \quad \text{(Ricordare il grafico di } e^x!!);$$

$$\lim_{x \to \infty} \frac{x}{e^x} = \frac{+\infty}{+\infty} \stackrel{\text{(H)}}{=} \lim_{x \to \infty} \frac{1}{e^x} = \frac{1}{+\infty} = 0$$

Di solito è anche utile sapere se il grafico "sta sopra" oppure "sta sotto" all'asse x. Per fare questo basta controllare dove f(x) è positiva e dove è negativa. In questo caso la cosa è immediata: f(x) sta sopra all'asse x per x > 0, sta sotto all'asse x per x < 0, taglia l'asse delle x per x = 0.

Conviene riportare tutti questi risultati in un diagramma che ci consentirà di tracciare facilmente un grafico significativo della funzione stessa. Nella pratica è conveniente costruire questo diagramma un po' alla volta, man mano che si ottengono i vari risultati.

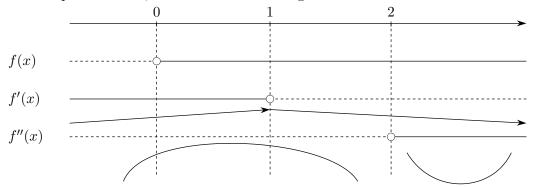


Figura 10.5 Diagramma preparatorio allo studio della funzione $f(x) = x/e^x$

Per tracciare un grafico il più corretto possibile ci serve ancora trovare l'ordinata del punto di massimo (massimo relativo ma anche assoluto in quanto la funzione non supera mai questo valore):

$$f(1) = \frac{1}{e} \simeq 0.37$$
.

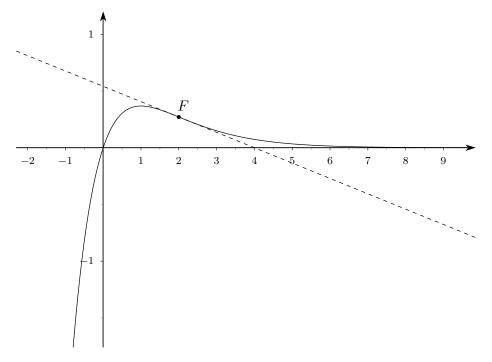


Figura 10.6 Grafico di $f(x) = x/e^x$ (Attenzione: unità di misura diverse sui due assi!)

Da quanto detto sul significato della derivata seconda si può concludere che se in un punto x_0 la derivata prima di una funzione si annulla e se in quel punto la derivata seconda è positiva, allora il punto è di minimo relativo, se invece la derivata seconda è negativa, allora il punto è di massimo relativo.

10.3 Asintoti al grafico di una funzione

L'ultimo raffinamento che ci interesserà relativamente alla rappresentazione grafica di una funzione è quello della ricerca di particolari rette, dette *asintoti*, a cui il grafico stesso "si avvicina indefinitamente". Ci sono tre tipi possibili di asintoti: verticali, orizzontali e obliqui.

1. Una retta verticale (cioè del tipo x=a, con a numero reale) è un asintoto verticale per una funzione se

$$\lim_{x \to a^+} f(x) = \infty \quad \lor \quad \lim_{x \to a^-} f(x) = \infty \quad \lor \quad \lim_{x \to a} f(x) = \infty \,,$$

dove non ha importanza il segno di infinito.

2. Una retta orizzontale (cioè del tipo y=b, con b numero reale) è un asintoto orizzontale per una funzione se

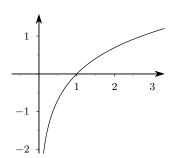
$$\lim_{x \to +\infty} f(x) = b \quad \lor \quad \lim_{x \to -\infty} f(x) = b.$$

3. Una retta obliqua (cioè del tipo y=mx+q, con $m\neq 0$) è un asintoto obliquo per una funzione se

$$\lim_{x \to +\infty} [f(x) - (mx + q)] = 0 \quad \lor \quad \lim_{x \to -\infty} [f(x) - (mx + q)] = 0.$$

Esempio 10.3. La retta x=0 è un asintoto verticale per la funzione $f(x)=\ln x$, infatti si ha

$$\lim_{x \to 0^+} \ln x = -\infty.$$

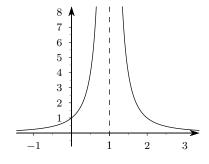


Esempio 10.4. La retta x = 1 è un asintoto verticale per la funzione $f(x) = \frac{1}{(x-1)^2}$, infatti si ha

$$\lim_{x \to 1} \frac{1}{(x-1)^2} = +\infty.$$

La retta y=0 è asintoto orizzontale per la stessa funzione, infatti si ha

$$\lim_{x \to \pm \infty} \frac{1}{(x-1)^2} = 0.$$

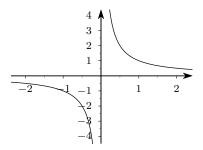


Esempio 10.5. La retta x = 0 è un asintoto verticale per la funzione f(x) = 1/x, infatti si ha

$$\lim_{x\to 0^-}\frac{1}{x}=-\infty\,\wedge\,\lim_{x\to 0^+}\frac{1}{x}=+\infty\,.$$

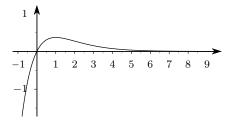
La retta y=0 è asintoto orizzontale per la stessa funzione, infatti si ha

$$\lim_{x \to +\infty} \frac{1}{x} = 0.$$



Esempio 10.6. La retta y=0 è asintoto orizzontale per la funzione $f(x)=x/e^x$, infatti si ha

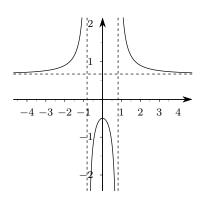
$$\lim_{x \to +\infty} \frac{x}{e^x} = 0.$$



Esempio 10.7. La retta y = 2/3 è asintoto orizzontale per la funzione $f(x) = \frac{(2x^2 + 1)}{(3x^2 - 2)}$, infatti si ha

$$\lim_{x \to \pm \infty} \frac{2x^2 + 1}{3x^2 - 2} = \frac{2}{3} \,.$$

Le rette $x = \pm \sqrt{2/3}$ sono asintoti verticali per la stessa funzione, infatti...



 $\overline{82}$

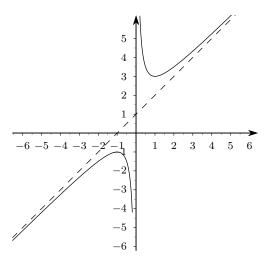
Esempio 10.8. La retta x = 0 è asintoto verticale per la funzione $f(x) = (x^2 + x + 1)/x$, infatti si ha

$$\lim_{x \to 0^{\pm}} \frac{x^2 + x + 1}{x} = \pm \infty.$$

La retta y = x+1 è asintoto obliquo per la stessa funzione, infatti si ha

$$\lim_{x \to \pm \infty} \left[\frac{(x^2 + x + 1)}{x} - (x + 1) \right] =$$

$$\lim_{x \to \pm \infty} \frac{1}{x} = 0.$$



83

Metodi pratici per la ricerca degli asintoti

Asintoti verticali Nei casi che ci interesseranno gli asintoti verticali si possono trovare (ma bisogna provare!) in presenza di funzioni fratte nei punti in cui si annulla il denominatore (punti che vanno esclusi dal dominio naturale), oppure in presenza di funzioni logaritmiche in punti in cui l'argomento del logaritmo si annulla.

Asintoti orizzontali Per ricercare questi asintoti basta fare i limiti per $x \to \pm \infty$ (di solito separatamente a $+\infty$ e a $-\infty$): se uno almeno di questi limiti è finito e vale b, allora y = b è asintoto orizzontale.

Asintoti obliqui Si procede secondo il seguente schema:

- 1. Si calcola il limite, per $x \to +\infty$: se il limite è finito si ha un asintoto orizzontale e il gioco finisce; se il limite non c'è, il gioco finisce ugualmente.
- 2. Se il precedente limite è infinito si calcola il limite

$$\lim_{x \to +\infty} \frac{f(x)}{r} :$$

se questo limite è 0, infinito, o non esiste, tutto finisce.

3. Se il limite precedente è finito e diverso da zero, e lo indichiamo con m, si calcola il limite

$$\lim_{x \to +\infty} [f(x) - mx] :$$

se questo limite è infinito o non esiste, tutto finisce. Se invece esso è finito (anche zero), e lo indichiamo con q, allora la retta

$$y = mx + q$$

è un asintoto obliquo.

4. Si ripete il tutto per $x \to -\infty$.

Esempio 10.9. Nella funzione

$$f(x) = \frac{x^2 - 1}{x^2 - x}$$

il denominatore si annulla per x=0 e per x=1. Si ha poi

$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - x} = \lim_{x \to 0} \frac{(x - 1)(x + 1)}{x(x - 1)} = \lim_{x \to 0} \frac{x + 1}{x} = 2,$$

mentre

$$\lim_{x\to 0^{\pm}}\frac{x^2-1}{x^2-x}=\pm\infty\,.$$

Dunque solo x = 0 è asintoto verticale.

Si ha poi

$$\lim_{x \to +\infty} \frac{x^2 - 1}{x^2 - x} = 1,$$

dunque y = 1 è asintoto orizzontale.

Esempio 10.10. Nella funzione

$$f(x) = \ln(x+2)$$

il dominio naturale è x>-2, e l'argomento del logaritmo si annulla per x=-2. Poiché si ha

$$\lim_{x \to -2^+} \ln(x+2) = -\infty,$$

la retta x=-2 è asintoto verticale. Si ha poi

$$\lim_{x \to +\infty} \ln(x+2) = +\infty;$$

dunque non ci sono asintoti orizzontali. Calcoliamo allora

$$\lim_{x\to +\infty}\frac{f(x)}{x}=\lim_{x\to +\infty}\frac{\ln(x+2)}{x}=\frac{+\infty}{+\infty} \stackrel{\text{(H)}}{=}\lim_{x\to +\infty}\frac{\frac{1}{x+2}}{1}=\lim_{x\to +\infty}\frac{1}{x+2}=0\,,$$

per cui non ci sono asintoti obliqui.

Esempio 10.11. Nella funzione

$$f(x) = \frac{x^2 + 1}{x - 1}$$

il dominio naturale è $x \neq 1$. Poiché si ha

$$\lim_{x \to 1^{\pm}} \frac{x^2 + 1}{x - 1} = \pm \infty \,,$$

la retta x = 1 è asintoto verticale. Si ha poi

$$\lim_{x \to +\infty} \frac{x^2 + 1}{x - 1} = \pm \infty,$$

per cui non ci sono asintoti orizzontali. Calcoliamo allora

$$\lim_{x \to \pm \infty} \frac{f(x)}{x} = \lim_{x \to \pm \infty} \frac{\frac{x^2 + 1}{x - 1}}{x} = \lim_{x \to \pm \infty} \frac{x^2 + 1}{x^2 - x} = \dots = 1 \ (= m)$$

Possiamo procedere con il calcolo:

$$\lim_{x \to \pm \infty} [f(x) - mx] = \lim_{x \to \pm \infty} \left[\frac{x^2 + 1}{x - 1} - 1 \cdot x \right] = \lim_{x \to \pm \infty} \frac{x^2 + 1 - x^2 + x}{x - 1} = \dots = 1,$$

dunque la retta y = x + 1 è asintoto obliquo (e la cosa funziona sia a $+\infty$ che a $-\infty$).

Il lettore è invitato a controllare questi risultati usando, per esempio, Geogebra.

10.4 Conclusioni sul tracciamento del grafico di una funzione

Data una funzione f, per tracciarne il grafico si procede con il seguente schema.

- 1. Si determina il dominio naturale.
- 2. Si verifica quando la funzione è positiva, e quando è negativa e quando si annulla.
- 3. Si determinano tutti gli eventuali asintoti.
- 4. Si calcola la derivata prima e se ne deducono gli intervalli in cui la funzione è crescente o decrescente e, di conseguenza, i massimi e minimi.
- 5. Si calcola la derivata seconda e se ne deducono gli intervalli in cui la funzione è concava o convessa e, di conseguenza, i flessi.
- 6. Si calcola esplicitamente il valore della funzione in qualche punto notevole.
- 7. Si riportano i risultati su un grafico che deve esplicitare tutti i risultati trovati.

Esempio 10.12. Vogliamo tracciare il grafico della funzione

$$f(x) = \frac{e^x}{x}.$$

- 1. Il dominio naturale della funzione è $x \neq 1$.
- 2. La funzione è positiva per x > 0, negativa per x < 0, non si annulla mai.
- 3. Si ha

$$\lim_{x \to 0^{\pm}} \frac{\mathrm{e}^x}{x} = \frac{1}{0^{\pm}} = \pm \infty \,,$$

dunque x=0 è asintoto verticale. Si ha poi

$$\lim_{x \to -\infty} \lim_{x \to -\infty} \frac{e^x}{x} = \frac{0}{-\infty} = 0,$$

dunque y=0 è un asintoto orizzontale (valido solo a $-\infty$). Invece

$$\lim_{x \to +\infty} \lim_{x \to +\infty} \frac{\mathrm{e}^x}{x} = \frac{+\infty}{+\infty} \stackrel{\text{(H)}}{=} \lim_{x \to +\infty} \lim_{x \to +\infty} \frac{\mathrm{e}^x}{1} = +\infty,$$

dunque dobbiamo calcolare anche il limite di f(x)/x:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{\mathrm{e}^x}{x^2} \stackrel{\text{(H)}}{=} \lim_{x \to +\infty} \frac{\mathrm{e}^x}{2x} \stackrel{\text{(H)}}{=} \lim_{x \to +\infty} \frac{\mathrm{e}^x}{2} = \frac{+\infty}{2} = +\infty,$$

dunque non ci sono asintoti obliqui.

4. La derivata prima della funzione è

$$f'(x) = \frac{e^x x - e^x 1}{x^2} = \frac{e^x (x - 1)}{x^2},$$

che è positiva per x > 1, negativa per x < 1, si annulla per x = 1. Dunque...

5. La derivata seconda della funzione è

$$f''(x) = \dots = \frac{e^x(x^2 - 2x + 2)}{x^3}$$
,

che è positiva per x > 0, negativa per x < 0 e non si annulla mai. Dunque...

- 6. Il valore della funzione nel punto di minimo relativo x = 1 è f(1) = e.
- 7. Il grafico della funzione è allora il seguente.

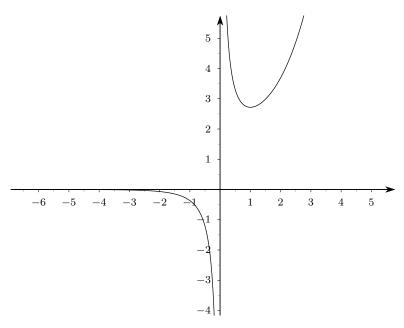


Figura 10.7 Grafico della funzione $f(x) = e^x/x$

10.5 Esercizi

Esercizio 10.1. Studiare le seguenti funzioni.

1.
$$f(x) = \sqrt{x} + \ln x$$
;

$$2. \ f(x) = \sqrt{x} - \ln \sqrt{x};$$

3.
$$f(x) = x - \ln(x^2 - 1)$$
;

4.
$$f(x) = x^4 - x^3$$
;

5.
$$f(x) = x^3 + x^4$$
;

6.
$$f(x) = x^6 - x^4$$
;

7.
$$f(x) = x^4 - 1$$
;

8.
$$f(x) = x^3 - x^2 + x$$
.

Esercizio 10.2. Studiare le seguenti funzioni ristrette all'intervallo I indicato, calcolando, in particolare, il massimo e minimo assoluti, se esistono.

1.
$$f(x) = \frac{1}{x+1}$$
, $I = [0,1]$;

2.
$$f(x) = \frac{1}{x+1}$$
, $I = [-3, 0]$;

3.
$$f(x) = \frac{x}{x+1}$$
, $I = [-3, -1]$;

4.
$$f(x) = \frac{x}{1-x}$$
, $I = [-3, 3]$;

5.
$$f(x) = x + \frac{1}{x}$$
, $I = [3, 4]$;

6.
$$f(x) = x + \sqrt{x-1}$$
, $I = [0, 4]$;

7.
$$f(x) = \frac{1}{x^2} - 1$$
, $I = [-3, 3]$;

8.
$$f(x) = \frac{1}{x^3}$$
, $I = [-3.3]$;

9.
$$f(x) = x^3 + x$$
, $I = [-10, 0]$;

10.
$$f(x) = x^3 - x^2$$
, $I = [-1, 10]$;

11.
$$f(x) = \ln(x^3 + x^2)$$
, $I = [0, 10]$;

12.
$$f(x) = \sqrt{x^2 + 1}$$
, $I = [-10, 10]$;

13.
$$f(x) = x^3 + x^2$$
, $I = [0, 3]$;

14.
$$f(x) = x^5 + x$$
, $I = [0, 1]$.

Esercizio 10.3. Studiare le sequenti funzioni, tralasciando lo studio della derivata seconda se troppo complesso.

1.
$$f(x) = \frac{1}{x^2 + 1}$$
;
2. $f(x) = \frac{1}{x^2 - 1}$;

$$2. \ f(x) = \frac{1}{x^2 - 1}$$

3.
$$f(x) = \frac{1}{x^2 + x}$$

3.
$$f(x) = \frac{1}{x^2 + x}$$
;
4. $f(x) = \frac{x^2}{x^2 + 1}$;

5.
$$f(x) = \ln \frac{1}{x}$$
;

6.
$$f(x) = \ln\left(\frac{1}{x^2} + 1\right)$$
;

7.
$$f(x) = e^{x^2}$$

8.
$$f(x) = xe^{1/x}$$

8.
$$f(x) = xe^{1/x}$$
;
9. $f(x) = e^{1-x^2}$;

$$10. \ f(x) = \frac{\ln x}{x};$$

$$11. \ f(x) = \frac{e^x}{x}.$$

Esercizio 10.4. Determinare i punti di massimo e minimo relativo delle seguenti funzioni usando solo f' = 0 e f'' > 0 oppure f'' < 0.

1.
$$f(x) = \ln(2x^2 - x)$$
;

2.
$$f(x) = e^{3x}(x^2 + x)$$
;

3.
$$f(x) = x^3 - x^4$$
;

4.
$$f(x) = e^{x^2 - 2x}$$
.

Esercizio 10.5. Usando il metodo indicato nell'esercizio 10.4, dire se i punti indicati sono di massimo o minimo relativo per le funzioni seguenti.

1.
$$f(x) = x \ln(x^2 - 4x^3)$$
; $x = 0$, $x = 2$;

2.
$$f(x) = e^{x^2 - 3x^3}$$
; $x = 0$, $x = 1$;

3.
$$f(x) = e^{4x^3 - 3x^4}$$
; $x = 0$, $x = -1$, $x = 1$;

4.
$$f(x) = x^2 e^{2x} - 2x^2 \ln x$$
; $x = 0$, $x = 3$.

Esercizio 10.6. Tracciare il grafico delle seguenti funzioni, valutando in particolare la continuità e la derivabilità.

1.
$$f(x) = \begin{cases} x, & se \quad x \le 0 \\ -2x, & se \quad x > 0 \end{cases}$$
;

2.
$$f(x) = \begin{cases} x^2, & se \ x \le 0 \\ -x^3, & se \ x > 0 \end{cases}$$
;

3.
$$f(x) = \begin{cases} \sqrt{x}, & se \quad x \leq 0 \\ -x^2, & se \quad x > 0 \end{cases}$$
;

4.
$$f(x) = \begin{cases} 2^x, & se \ x \le -1 \\ \ln(x-2), & se \ x > -1 \end{cases}$$
;

5.
$$f(x) = \begin{cases} \sqrt{x}, & se \quad x < 1 \\ \sqrt[3]{x} + 1, & se \quad x \ge 1 \end{cases}$$
;

6.
$$f(x) = \begin{cases} 2^{-x} + 1, & se \ x < -1 \\ -\ln(x+2), & se \ x \ge -1 \end{cases}$$
;

7.
$$f(x) = \begin{cases} x, & se \ x \le 1/2 \\ x^2 + 1/2, & se \ x > 1/2 \end{cases}$$
;

8.
$$f(x) = \begin{cases} x^2, & se \ x \le 1 \\ (2/3) x^3, & se \ x > 1 \end{cases}$$
;

9.
$$f(x) = \begin{cases} 4\sqrt{x}, & se \quad x \le 1 \\ x^2, & se \quad x > 1 \end{cases}$$
;

10.
$$f(x) = \begin{cases} 3^x, & se \ x \le 2 \\ \ln(x^2 + 1), & se \ x > 2 \end{cases}$$
;

11.
$$f(x) = \begin{cases} 2\sqrt{x}, & se \ x < 1 \\ 3\sqrt[3]{x}, & se \ x \ge 1 \end{cases}$$
.

11 Funzioni di due variabili

11.1 Funzioni di due variabili - Introduzione

Un caso molto importante di funzioni con cui avremo a che fare nel seguito di questo capitolo è quello delle funzioni in cui il dominio è un insieme di coppie di numeri reali (cioè un sottoinsieme di \mathbb{R}^2) e il codominio è l'insieme dei numeri reali: diremo brevemente funzioni di due variabili. Potremo usare una scrittura del tipo

$$(11.1) z = f(x, y).$$

La rappresentazione grafica cartesiana di funzioni di questo tipo richiede un sistema di tre assi (che per noi saranno sempre mutuamente ortogonali): abbiamo bisogno infatti di una coppia di numeri per i punti del dominio, più un numero per i corrispondenti valori del codominio. Come vedremo, nelle situazioni che ci interesseranno, questi grafici avranno l'aspetto di superfici nello spazio. Riservandoci di approfondire successivamente l'argomento, proponiamo solo un grafico di esempio nella figura 11.1.

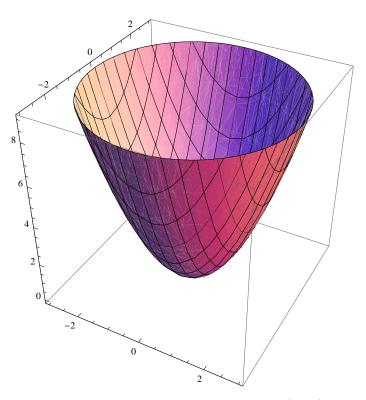


Figura 11.1 Grafico della funzione $z = x^2 + y^2$

11.2 Introduzione illustrata

Richiamiamo alcuni concetti fondamentali relativi alla rappresentazione delle funzioni di una variabile, fissando l'attenzione su quanto sarà utile per affrontare con sicurezza il caso di due variabili. Se consideriamo la funzione che ad ogni numero reale x fa corrispondere la sua metà, possiamo costruire una tabella a doppia entrata in cui su una colonna mettiamo il valore di x (variabile indipendente) e sull'altra il corrispondente valore di y = f(x) (variabile dipendente). Naturalmente potremo scrivere esplicitamente la tabella solo in corrispondenza a un numero finito di valori di x, per esempio per alcuni valori presi sui numeri naturali, come nella tabella 6.1 della pagina 36, tabella che qui riportiamo per comodità.

$$\begin{array}{c|cc}
x & x/2 \\
\hline
1 & 1/2 \\
2 & 1 \\
3 & 3/2 \\
4 & 2 \\
5 & 5/2
\end{array}$$

Tabella 11.1 Rappresentazione "tabulare" di una funzione di una variabile

I dati di questa tabella possono essere riportati in un grafico cartesiano, come nella figura 6.4 della pagina 38; riportiamo qui anche questa figura per comodità.

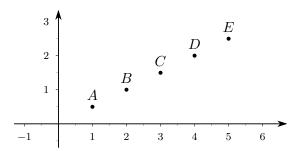


Figura 11.2 Grafico cartesiano relativo alla tabella 11.1

Come già accennato, questo grafico può essere desunto compattando un grafico "a frecce": da ogni punto x dell'asse delle ascisse facciamo partire una freccia verticale fino alla "quota" f(x), cioè fino al punto (x, f(x)); a partire da questa quota la freccia "piega" orizzontalmente fino a incontrare l'asse delle y esattamente in corrispondenza del valore f(x), come nella figura seguente (già considerata nella pagina 38).

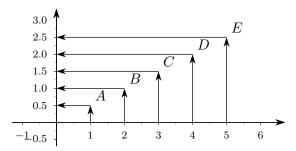


Figura 11.3 Grafico cartesiano con frecce, relativo alla tabella 11.1

Se si riportano nel grafico della figura 11.2 anche i punti corrispondenti ai valori di x che non compaiono nella tabella, si ottiene il risultato visualizzato nella figura seguente: i punti rappresentativi non si dispongono casualmente nel piano, ma su una linea, in questo caso su una linea retta, in casi più generali su una linea più complessa, come abbiamo già avuto modo di constatare.

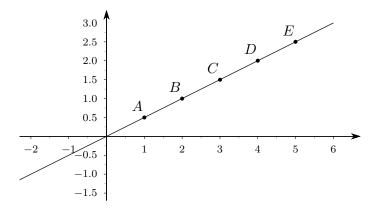


Figura 11.4 Grafico della funzione y = x/2, comprendente i punti della figura 11.2

Se consideriamo ora una funzione di due variabili, per esempio f(x,y) = x + y, potremo ancora costruire una tabella come la 11.1, ma dovremo utilizzare tre colonne: due per le variabili indipendenti e una per la variabile dipendente. Naturalmente anche qui la tabella potrà essere effettivamente costruita solo per alcune coppie di valori (x, y).

x	y	x + y
1	0	1
0	1	1
1	1	2
1	-1	0

Tabella 11.2 Rappresentazione "tabulare" di una funzione di due variabili

Quello che si ottiene è un insieme di terne di numeri e le terne di numeri possono essere rappresentate nello spazio dove si sia introdotto un sistema di 3 assi cartesiani ortogonali, Oxyz.

Scegliamo, come è tradizione, di rappresentare le coppie (x,y) che stanno nel dominio di f sul piano Oxy. Da ciascuno di questi punti facciamo partire una freccia verticale fino alla "quota" f(x,y), cioè fino al punto (x,y,f(x,y)); a partire da questa quota la freccia "piega" orizzontalmente fino a incontrare l'asse z in corrispondenza al valore f(x,y), come mostra la figura seguente per un singolo punto (x,y) del dominio.

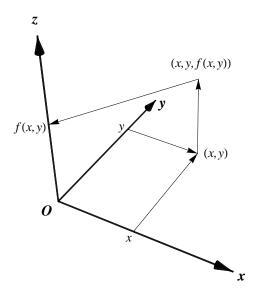


Figura 11.5 Procedimento per tracciare il grafico di una funzione di due variabili

Naturalmente, come già per le funzioni di una variabile, scegliamo alcuni punti nel dominio, per esempio quelli individuati da una griglia tracciata nel piano Oxy, e da ognuno innalziamo la freccia fino alla quota f(x, y): ne viene un boschetto di frecce, come nella figura che segue.

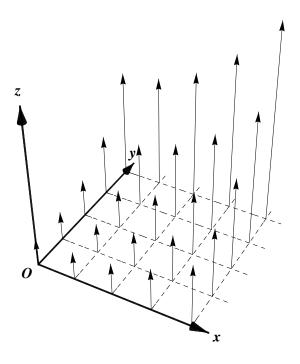
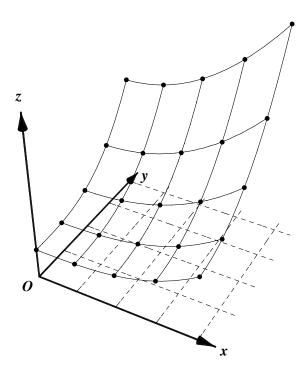


Figura 11.6 Un "boschetto" di frecce

Nei casi che interesseranno le punte delle frecce, cioè i punti di coordinate (x, y, f(x, y)), non si distribuiscono a casaccio nello spazio, ma su una superficie, che possiamo evidenziare per esempio con una "piastrellatura".



 ${\bf Figura~11.7~} {\it Una~superficie-grafico}$

Per rendere più significativo il grafico si possono introdurre anche colorazioni come nella figura che segue.

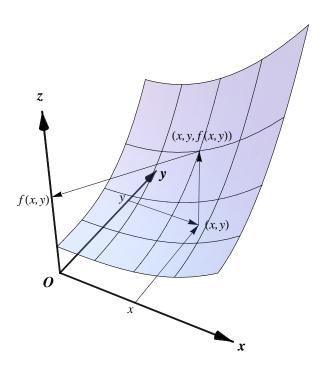


Figura 11.8 Uso di colorazioni per le superfici-grafico

Non tutte le caratteristiche che si evidenziano nel grafico delle funzioni di una variabile po-

tranno essere trasferite ai grafici di funzioni di due variabili; per esempio non avrà alcun senso parlare di crescenza o decrescenza, mentre potremo ancora considerare (e la cosa sarà per noi della massima importanza) i concetti di di massimo e minimo (relativo o assoluto). Potremo usare l'appellativo monte e cima per riferirci ai massimi, l'appellativo valle e fondovalle per riferirci ai minimi. La figura che segue mostra, come esempio, una situazione in cui sono presenti due monti e una valle. In questa figura non sono tracciati gli assi, per non complicare il grafico: è una scelta che si fa normalmente nei grafici tridimensionali, dove si racchiude la parte di superficie che interessa in un "box", riportando sugli spigoli i valori delle variabili sui tre assi.

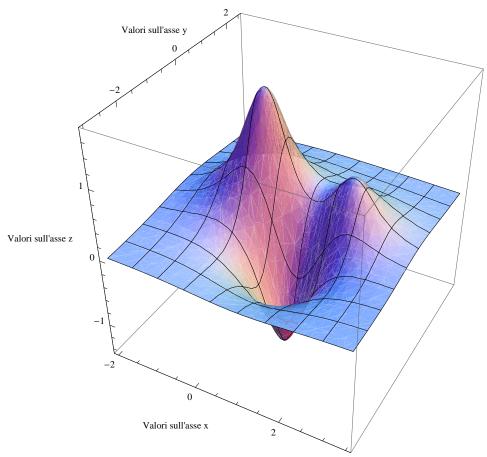
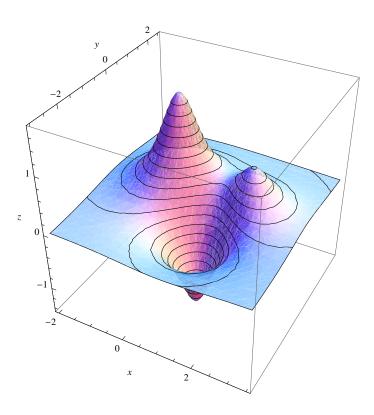


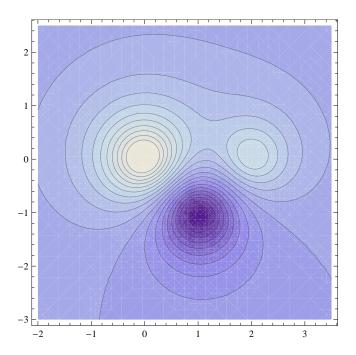
Figura 11.9 Una funzione con due "monti" e una "valle"

A volte, invece di tracciare sulla superficie una piastrellatura che riproduca la griglia del piano Oxy, conviene tracciare altre linee. Una delle scelte più comuni è quella delle linee di livello, o linee di quota: si tratta di evidenziare sulla superficie tutti i punti che si trovano a una determinata quota, punti che nelle situazioni comuni si distribuiscono su una linea che si può pensare ottenuta intersecando la superficie con un piano orizzontale (parallelo al piano Oxy). La figura 11.10 mostra alcune di queste linee per la stessa superficie della figura 11.9.

La considerazione delle linee di livello consente di costruire un rappresentazione grafica "bidimensionale" della stessa superficie: sarà sufficiente "raccogliere" tutte queste linee sul piano Oxy e magari usare colori via via più chiari per indicare le cime e via via più scuri per indicare le valli. Si tratta della convenzione che viene normalmente adottata nelle carte geografiche. Si può vedere questa rappresentazione per la stessa superficie della figura 11.9 nella figura 11.11.



 ${\bf Figura~11.10~\it Linee~di~livello}$



 ${\bf Figura~11.11~\it Linee~di~livello~raccolte~sul~piano~\it Oxy}$

La figura 11.12 mostra come si ottiene una delle linee di livello mediante intersezione della superficie con un piano orizzontale.

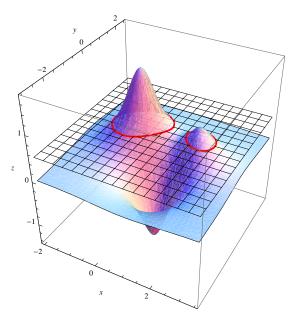


Figura 11.12 Sezione di una superficie con un piano orizzontale

Ritornando alla piastrellatura della figura 11.9, possiamo osservare che le linee della piastrellatura non sono altro che le intersezioni della superficie con piani verticali paralleli o al piano Oxz o al piano Oyz.

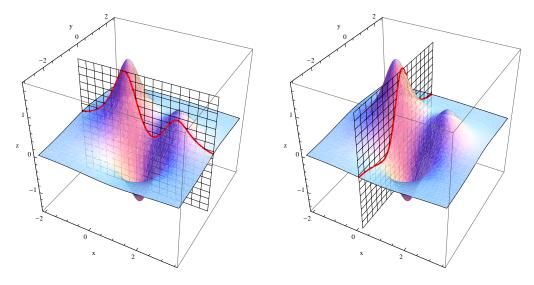


Figura 11.13 Sezione di una superficie con piani verticali paralleli a Oxz e a Oyz

Nel seguito saremo interessati a considerare anche questo tipo di sezioni.

Osserviamo anche esplicitamente che i massimi e minimi per funzioni di due variabili godono di proprietà grafiche simili a quelle delle funzioni di una variabile: per le funzioni di una variabile (opportunamente regolari e in particolare senza spigoli) nei massimi e minimi interni al dominio la retta tangente al grafico risultava orizzontale, ovvero parallela all'asse x; per le funzioni di

due variabili (sempre opportunamente regolari) nei massimi e minimi interni al dominio sarà il piano tangente ad essere orizzontale, cioè parallelo al piano Oxy. Le immagini della figura 11.14 mostrano i piani tangenti in corrispondenza di un massimo e di un minimo; la prima immagine mostra la superficie vista dall'alto, la seconda vista dal basso, per evidenziare meglio i piani tangenti.

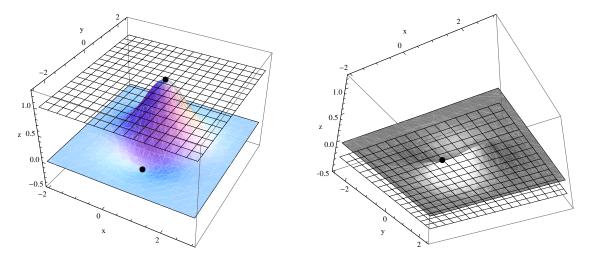


Figura 11.14 Piani tangenti in un punto di massimo e in un punto di minimo

Trattando le funzioni di una variabile, oltre ai massimi e minimi, abbiamo considerato anche i flessi a tangente orizzontale (come caso particolare di quelli a tangente obliqua). Non esiste nulla di simile per le funzioni di due variabili, nella quali però compare un fenomeno completamente nuovo: i punti di sella, dove, come vedremo, la situazione è decisamente più complessa che non con i flessi in una variabile.

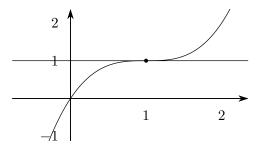


Figura 11.15 Un flesso a tangente orizzontale

Per le funzioni di una variabile l'idea fondamentale (per funzioni regolari) è che un punto di flesso (in particolare a tangente orizzontale) è un punto dove si ha un cambio di concavità. Completamente diversa la situazione per funzioni di due variabili: si definisce punto di sella un punto in cui il piano tangente è orizzontale e in cui vale la seguente proprietà: se passiamo per il punto in certe direzioni il punto si presenta come un massimo, mentre in certe direzioni si presenta come un minimo.

Geograficamente un punto di sella corrisponde a un valico di montagna: per chi lo attraversa il valico è il punto più alto, per chi invece segue il crinale da una cima all'altra è il punto più basso

Il nome punto di sella ricorda proprio la sella di un cavallo: il punto in cui il cavaliere è seduto è un massimo nella direzione destra-sinistra, è un minimo nella direzione avanti-dietro. Osserviamo anche che se su una normale sella di cavallo dovesse sedersi una scimmia, essa avrebbe difficoltà

a sistemare la coda; esistono anche situazioni in cui la superficie ha un punto in cui potrebbe sedersi una scimmia, facendo posto sia alle gambe che alla coda (anche se non si conoscono cavalli su cui fissarla!), e si potrebbe parlare in questo caso di *selle di scimmia*. La figura 11.16 mostra una sella nel senso ordinario del termine, con evidenziate due direzioni lungo le quali sulla superficie si ha un massimo e un minimo rispettivamente. La figura 11.17 mostra invece un punto a "sella di scimmia" su una superficie, e qui non si hanno direzioni lungo le quali si ha un massimo e direzioni lungo le quali si ha un minimo: dal punto di vista formale la situazione è ancora più complessa.

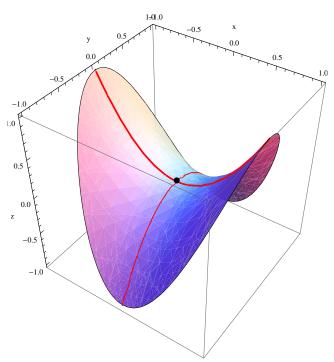


Figura 11.16 Una "sella di cavallo"

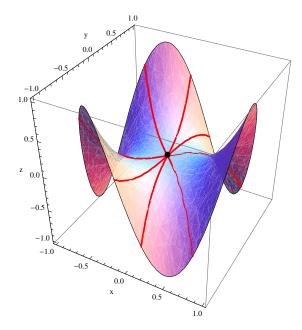


Figura 11.17 Una "sella di scimmia"

11.3 Qualche esempio significativo

Proponiamo alcuni esempi di grafici di funzioni di due variabili, che ci saranno utili nel seguito. Le figure rappresentano le superfici sia utilizzando una piastrellatura che curve di livello.

1. Piano z = 2x + 3y, o anche 2x + 3y - z = 0.

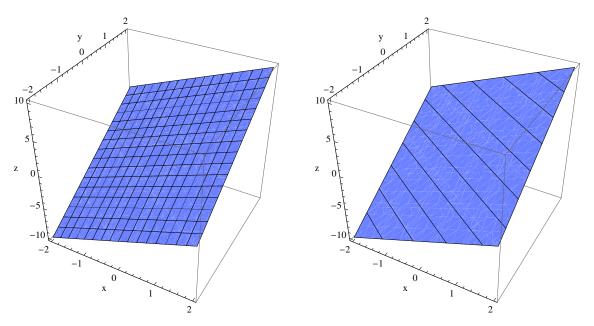


Figura 11.18 *Piano* z = 2x + 3y

2. Paraboloide $z=x^2+y^2$. Si tratta della superficie ottenuta per rotazione della parabola $z=x^2$, attorno all'asse z. Le sue curve di livello sono circonferenze con centro sull'asse z.

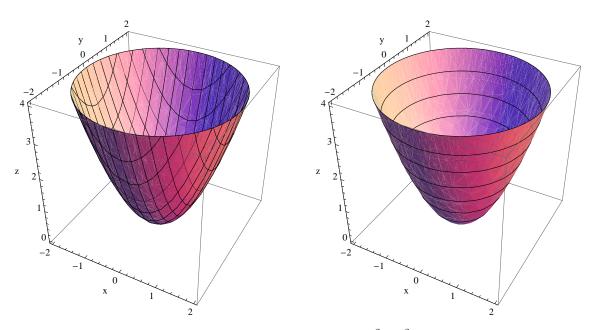


Figura 11.19 Paraboloide $z = x^2 + y^2$

3. Paraboloide a sezione ellittica: $z=3x^2+y^2$. Superficie simile a quella della figura 11.19, ma con curve di livello a sezione ellittica con centro sull'asse z.

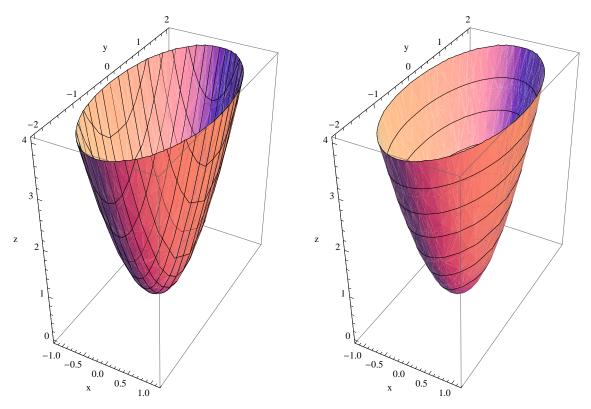


Figura 11.20 Paraboloide a sezione ellittica: $z = 3x^2 + y^2$

4. La sella $z = x^2 - y^2$.

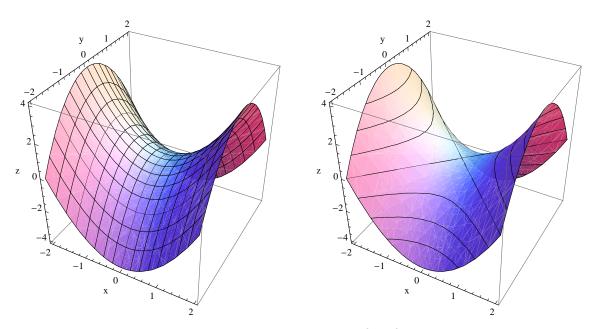


Figura 11.21 La sella $z = x^2 - y^2$

5. La superficie $z=x^2$. Si tratta della superficie ottenuta traslando la parabola $z=x^2$ lungo l'asse delle x.

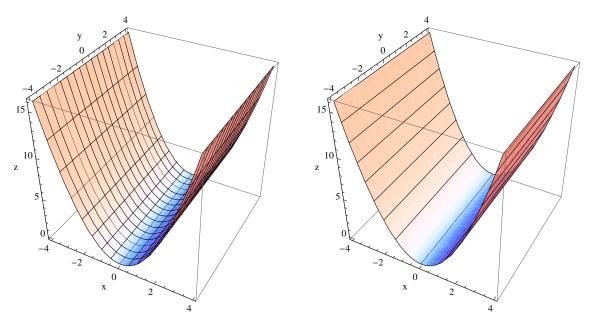


Figura 11.22 La superficie $z = x^2$

6. La superficie $z=\mathrm{e}^{x^2+y^2}$. Molto simile a un paraboloide, ma si osservi la grande differenza di unità di misura tra gli assi x e y da un lato e l'asse z dall'altro. Si noti anche che, in questo caso, il vertice si trova a quota 1 sull'asse z, mentre nel paraboloide si trova sull'origine.

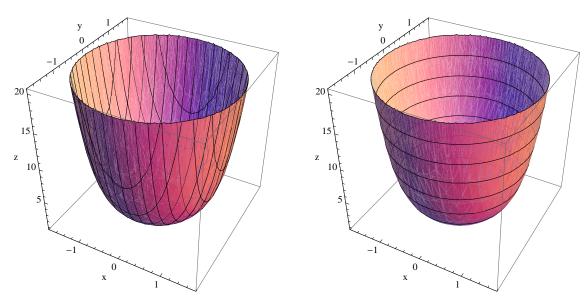


Figura 11.23 La superficie $z = e^{x^2 + y^2}$

11.4 Linee di livello

Definizione 11.1 (Linea di livello). Data un funzione f(x, y) una linea di livello k, che possiamo indicare con l_k , è l'insieme ottenuto come soluzione del sistema

(11.2)
$$\begin{cases} z = f(x,y) \\ z = k \end{cases},$$

ovvero è l'insieme (di solito una linea nel senso intuitivo del termine) intersezione tra la superficie grafico della funzione e il piano orizzontale a quota k. Questa linea (essendo un'equazione in due variabili) va rappresentata sul piano Oxy (piano base), ma può anche essere tracciata direttamente sopra la superficie grafico della funzione.

Esempio 11.1. Data $f(x,y) = x - y^2$, la linea di livello 1 è la parabola della figura 11.24

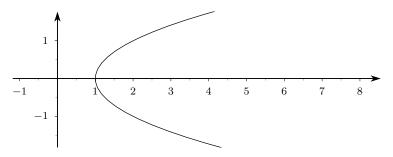


Figura 11.24 Linea di livello 1 per la funzione $f(x,y) = x - y^2$

11.5 Derivate parziali

Definizione 11.2 (Intorno di un punto nel piano). Dato un punto $P_0 = (x_0, y_0) \in \mathbb{R}^2$, si chiama intorno di P_0 di raggio r, e si indica con $I(P_0, r)$, l'insieme dei punti P = (x, y) che hanno da P_0 distanza minore di r, cioè

$$I(P_0, r) = \{ (x, y) \in \mathbb{R}^2 : d(P, P_0) < r \}.$$

Essendo (vedi la formula 3.1)

$$d(P, P_0) = \sqrt{(x - x_0)^2 + (y - y_0)^2},$$

la disuguaglianza $d(P, P_0) < r$ si può scrivere come

$$\sqrt{(x-x_0)^2 + (y-y_0)^2} < r$$
 ovvero $(x-x_0)^2 + (y-y_0)^2 < r^2$.

Intorno di un punto (x_0, y_0) è dunque l'insieme dei punti interni alla circonferenza di centro (x_0, y_0) e raggio r.

Definizione 11.3 (Punto interno). Dato un insieme D, un punto $P_0 = (x_0, y_0)$ si dice interno a D se esiste almeno un interno di P_0 tutto contenuto in D. È ovvio che un punto interno appartiene sempre all'insieme.

Definizione 11.4 (Derivate parziali). Data una funzione z = f(x, y) e un punto (x_0, y_0) interno al suo dominio, possiamo considerare la funzione, della variabile $x, z = f(x, y_0) = g(x)$, ottenuta

fissando y al valore y_0 e lasciando variare x, ovvero la funzione che si ottiene intersecando la superficie z = f(x, y) con il piano verticale $y = y_0$. Possiamo ora considerare il

(11.3)
$$\lim_{x \to x_0} \frac{f(x, y_0) - f(x_0, y_0)}{x - x_0},$$

ovvero il limite del rapporto incrementale della funzione z = g(x). Se questo esiste ed è finito, esso si chiama derivata parziale prima rispetto a x della funzione f, nel punto (x_0, y_0) e si indica con

$$(11.4) f_x'(x_0, y_0).$$

In maniera perfettamente analoga, possiamo considerare la funzione, della variabile $y, z = f(x_0, y) = h(y)$, ottenuta fissando x al valore x_0 e lasciando variare y, ovvero la funzione che si ottiene intersecando la superficie z = f(x, y) con il piano verticale $x = x_0$. Possiamo ora considerare il

(11.5)
$$\lim_{y \to y_0} \frac{f(x_0, y) - f(x_0, y_0)}{y - y_0},$$

ovvero il limite del rapporto incrementale della funzione z = h(y). Se questo esiste ed è finito, esso si chiama derivata parziale prima rispetto a y della funzione f, nel punto (x_0, y_0) e si indica con

$$(11.6) f_y'(x_0, y_0).$$

In pratica il calcolo delle due derivate parziali in un punto generico x, y) interno al dominio si fa pensando la funzione f(x, y) come funzione di una sola delle due variabili e trattando l'altra come un parametro costante.

Esempio 11.2. Da $f(x,y) = x^2 + 4xy + 3xy^2$, si ottiene $f'_x(x,y) = 2x + 4y + 3y^2$, $f'_y(x,y) = 4x + 6xy$. Esempio 11.3. Da $f(x,y) = \sin(x + x^2y)$, si ottiene $f'_x(x,y) = (1 + 2xy)\cos(x + x^2y)$, $f'_y(x,y) = x^2\cos(x + x^2y)$.

Esempio 11.4. Da
$$f(x,y) = e^{x^2+y^2}$$
, si ottiene $f'_x(x,y) = 2xe^{x^2+y^2}$, $f'_y(x,y) = 2ye^{x^2+y^2}$.

Come mostrano gli esempi proposti, le derivate parziali, calcolate in un generico punto, sono esse stesse funzioni di due variabili, e quindi posso riapplicare ad esse ancora la derivazione, ottenendo le derivate seconde; precisamente avendo ottenuto da una funzione due derivate parziali prime, da ciascuna otterrò due derivate parziali, per un totale di quattro derivate parziali seconde della funzione originaria:

- f''_{xx} sarà la derivata prima rispetto a x della f'_{x} ;
- f''_{yy} sarà la derivata prima rispetto a y della f'_y ;
- f''_{xy} sarà la derivata prima rispetto a y della f'_x ;
- $f_{yx}^{"}$ sarà la derivata prima rispetto a x della $f_{y}^{'}$.

Le prime due si chiamano derivate parziali seconde $pure^{(1)}$, le ultime due si chiamano derivate parziali seconde miste.

Esempio 11.5. Da $f(x,y) = x^2 + 4xy + 3xy^2$, si ottiene, come già visto, $f'_x(x,y) = 2x + 4y + 3y^2$, $f'_y(x,y) = 4x + 6xy$ e, successivamente, $f''_{xx}(x,y) = 2$, $f''_{yy}(x,y) = 6x$, $f''_{xy}(x,y) = 4 + 6y$, $f''_{yx}(x,y) = 4 + 6y$.

¹Spesso l'appellativo "pure" si tralascia

Si potrebbe naturalmente proseguire ottenendo le derivate terze, e così via, ma non saremo interessati al loro uso. Osserviamo invece che, nell'esempio precedente, $f''_{xy}(x,y) = 4 + 6y = f''_{yx}(x,y)$. La cosa, anche se a prima vista sorprendente, non è casuale. Vale infatti il seguente notevole teorema.

Teorema 11.5 (Teorema di Schwartz). Se le derivate seconde miste sono continue, allora esse sono uquali.

Nei casi che ci interessano le cose andranno sempre nel senso previsto da questo teorema, ovvero le derivate seconde miste saranno sempre uguali.

Come abbiamo già avuto modo di constatare, la derivata prima per funzioni di una variabile permette il calcolo della pendenza della retta tangente al grafico della funzione e quindi la determinazione dell'equazione di questa tangente. Per le funzioni di due variabili le derivate parziali, in base a quanto abbiamo detto, serviranno a determinare le equazioni delle rette tangenti alle curve intersezione tra la superficie e il piano verticale parallelo al piano Oxz oppure Oyz. Esse però servono anche a determinare (almeno per funzioni abbastanza regolari) l'equazione del piano tangente alla superficie grafico della funzione di due variabili. Precisamente, data una funzione di due variabili z = f(x, y) e un punto (x_0, y_0) del suo dominio, dove la funzione ammette derivate parziali prime continue (come succederà sempre nei nostri casi), l'equazione del piano tangente alla superficie grafico della funzione nel punto (x_0, y_0, z_0) , con $z_0 = f(x_0, y_0)$ sarà:

(11.7)
$$z = f(x_0, y_0) + f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0).$$

Esempio 11.6. Riprendendo la funzione $f(x,y)=x^2+4xy+3xy^2$ già trattata prima e considerato il punto (1,-1), si ha f(1,-1)=0, $f'_x(1,-1)=1$, $f'_y(1,-1)=-2$, dunque l'equazione del piano tangente è

(11.8)
$$z = 0 + 1(x - 1) - 2(y + 1) \implies z = x - 2y - 3.$$

Esempio 11.7. Procedendo come nell'esempio precedente è facile provare che l'equazione del piano tangente al grafico di $z = -x^2 - y^2$, in corrispondenza al punto (1, -1) è: z = -2x + 2y + 2. La situazione è rappresentata nella figura 11.25, dove sono rappresentate anche le due curve sezione.

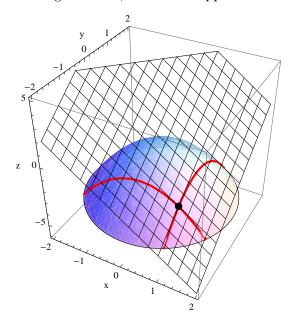


Figura 11.25 Superficie $z = -x^2 - y^2$ e piano tangente in (1, -1)

11.6 Ottimizzazione libera

I problemi principali a cui saremo interessati relativamente alle funzioni di due variabili sono i problemi di *ottimizzazione* libera, ovvero il problema della ricerca dei massimi e minimi nei punti interni al dominio della funzione. Nei casi che ci interessano questi problemi sono risolubili con lo studio delle derivate prime e seconde della funzione.

Adattiamo la definizione di massimo e minimo già data per funzioni di una variabile al caso di funzioni di due variabili.

Definizione 11.6. Sia data una funzione f, definita nell'insieme $D \subseteq \mathbb{R}^2$. Un punto $P_0 = (x_0, y_0) \in D$ si dice punto di massimo relativo se esiste un intorno $I(P_0, r)$ tale che per tutti i punti dell'intorno, $(x, y) \in I(P_0, r)$, si abbia

$$f(x,y) \le f(x_0, y_0).$$

Il punto $P_0 = (x_0, y_0) \in D$ si dice punto di minimo relativo se esiste un intorno $I(P_0, r)$ tale che per tutti i punti dell'intorno, $(x, y) \in I(P_0, r)$, si abbia

$$f(x,y) \ge f(x_0, y_0).$$

Se le disuguaglianze valgono in senso stretto (senza gli uguali) i punti si chiamano di massimo o minimo relativo proprio.

Il valore $f(x_0, y_0)$ si dice massimo, o minimo, relativo per la funzione.

Se le disuguaglianze considerate valgono in tutto il dominio, si parla di punto di massimo (o punto di minimo) assoluto.

Abbiamo già proposto grafici relativi a funzioni di due variabili in cui erano evidenziati massimi ("cime di monti") e minimi ("fondovalle"). Particolarmente significativa l'illustrazione 11.14 (nella pagina 97), in cui si evidenzia che il piano tangente alla superficie nei punti di massimo o di minimo (interni al dominio) è orizzontale, ovvero del tipo z=k. Si tratta di una situazione identica al caso delle funzioni di una variabile, dove, nei punti di massimo e minimo (interni al dominio) era la retta tangente ad essere orizzontale.

Se si tiene conto dell'equazione del piano tangente che abbiamo scritto nell'equazione (11.8), possiamo concludere che, in corrispondenza a un punto di massimo o minimo interno al dominio entrambe le derivate parziali saranno nulle, in perfetta analogia con il caso di una variabile dove si aveva l'annullamento della derivata prima.

Purtroppo (ancora come nel caso di funzioni di una variabile) l'annullarsi delle derivate *non* garantisce l'esistenza di un massimo o un minimo. Basta pensare ai punti di sella o alle selle di scimmia (vedi le figure 11.16 e 11.17).

Riproponiamo qui di seguito, per comodità, le stesse due figure con l'aggiunta del piano tangente.

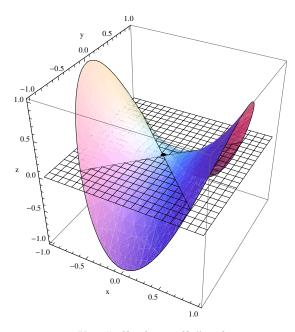


Figura 11.26 Una "sella di cavallo" e il piano tangente

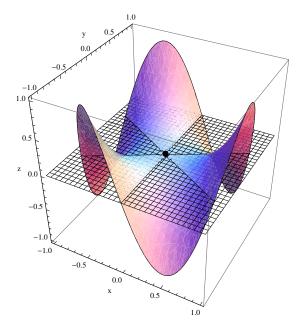


Figura 11.27 Una "sella di scimmia" e il piano tangente

La figura 11.27 mostra che la superficie ha un andamento "sfarfallante" rispetto al piano tangente nel punto dove esso risulta orizzontale. La situazione può essere anche più complessa, in quanto lo "sfarfallio" può essere ancora più accentuato, come mostra la figura 11.28.

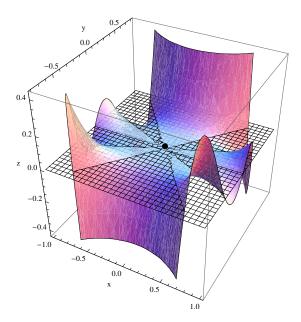


Figura 11.28 Superficie con pronunciato "sfarfallio" rispetto al piano tangente orizzontale

Quanto abbiamo detto si può riassumere nel seguente teorema.

Teorema 11.7 (Condizione necessaria per i massimi e minimi in due variabili). Se una funzione f(x,y) dotata di derivate parziali ha, in corrispondenza a un punto (x_0,y_0) interno al dominio, un massimo o un minimo, allora necessariamente le derivate sono contemporaneamente nulle in (x_0,y_0) .

Un punto (interno al dominio) in cui le derivate parziali siano contemporaneamente nulle (senza che necessariamente sia un punto di minimo o di massimo) si chiama un punto stazionario, a volte anche punto critico per f(x,y). Il teorema precedente si può allora riformulare dicendo che: condizione necessaria perché un punto (x_0, y_0) interno al dominio sia di massimo o di minimo per una funzione derivabile, è che esso sia un punto stazionario. La condizione non è in genere sufficiente.

Nel caso di una variabile per valutare se un punto (in cui la derivata prima si annulla) è di massimo di minimo (o di flesso), si può procedere a studiare la crescenza e decrescenza tramite il segno della derivata prima. Nulla di simile per le funzioni di due variabili, dove i concetti di funzione crescente e decrescente non hanno alcun senso. Per risolvere il problema ci viene in aiuto il teorema che segue, che dà una condizione sufficiente perché un punto stazionario sia di massimo o di minimo.

Teorema 11.8. Sia data una funzione f(x,y) dotata almeno di derivate seconde. Se (x_0,y_0) è un punto stazionario per f (interno al dominio), si calcolano, in (x_0,y_0) , le quattro⁽²⁾ derivate seconde e si costruisce la seguente tabella (matrice), detta matrice hessiana,

(11.9)
$$\begin{pmatrix} f''_{xx}(x_0, y_0) & f''_{xy}(x_0, y_0) \\ f''_{yx}(x_0, y_0) & f''_{yy}(x_0, y_0) \end{pmatrix}.$$

Successivamente si calcola il seguente numero, detto determinante hessiano o semplicemente hessiano, e indicato $H_f(x_0, y_0)$, o semplicemente con $H(x_0, y_0)$,

$$(11.10) \ f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) - f_{xy}''(x_0, y_0) f_{yx}''(x_0, y_0) = f_{xx}''(x_0, y_0) f_{yy}''(x_0, y_0) - \left(f_{xy}''(x_0, y_0)\right)^2,$$

²In realtà ne bastano tre perché, nei casi che ci interessano, le due miste sono uguali.

ottenuto facendo la differenza dei "prodotti in croce" degli elementi della precedente matrice. Ebbene:

- Se $H(x_0, y_0) < 0$, allora il punto (x_0, y_0) è un punto di sella.
- Se $H(x_0, y_0) > 0$, allora si guarda uno dei due termini sulla diagonale principale della matrice (cioè $f''_{xx}(x_0, y_0)$ o $f''_{yy}(x_0, y_0)$:
 - se esso è > 0 il punto è di minimo (relativo);
 - se esso è < 0 il punto è di massimo (relativo).
- Se $H(x_0, y_0) = 0$, allora nulla si può concludere: può succedere di tutto⁽³⁾.

Si tenga ben presente che se $H(x_0, y_0) > 0$, allora $f''_{xx}(x_0, y_0) f''_{yy}(x_0, y_0) - \left(f''_{xy}(x_0, y_0)\right)^2 > 0$,

da cui $f''_{xx}(x_0, y_0) f''_{yy}(x_0, y_0) > \left(f''_{xy}(x_0, y_0)\right)^2 \ge 0$, per cui le due derivate seconde pure devono avere lo stesso segno e non possono annullarsi: è per questo che è indifferente considerare una o l'altra.

Esempio 11.8. Trovare i punti stazionari della funzione $f(x,y) = 2\ln(x^2 + y^2 + 2) - xy$ e classificarli, usando la matrice hessiana.

Il primo passo consiste nel calcolare le derivate parziali prime e nel cercare i punti dove esse si annullano contemporaneamente (tecnicamente è questa la parte difficile perché si tratta di risolvere un sistema di due equazioni in due incognite, in genere non banale). Si ottiene:

$$\begin{cases} f'_x = \frac{4x}{x^2 + y^2 + 2} - y = 0\\ f'_y = \frac{4x}{x^2 + y^2 + 2} - x = 0 \end{cases}.$$

Questo sistema è abbastanza bruttino, ma con un po' di pazienza si riesce a trovare che le sue soluzioni sono (0,0), (1,1) e (-1,-1). Si hanno tre punti critici.

Si calcolano ora le derivate seconde e si scrivono le tre matrici hessiane, ottenendo, rispettivamente,

$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 1/2 & -3/2 \\ -3/2 & 1/2 \end{pmatrix}, \quad \begin{pmatrix} 1/2 & -3/2 \\ -3/2 & 1/2 \end{pmatrix}.$$

Nel primo punto si ha H=3>0 e i termini sulla diagonale maggiore sono positivi: si tratta di un minimo relativo. Negli altri due punti si ha H=-2<0, quindi sono due punti di sella⁽⁴⁾.

11.7 Esercizi

Esercizio 11.1. Calcolare le derivate parziali prime e seconde delle sequenti funzioni.

- 1. $f(x,y) = x^2y^2$.
- 2. $f(x,y) = xy xy^2$.
- 3. $f(x,y) = e^x y$.
- 4. $f(x,y) = e^{xy}xy$.
- 5. $f(x,y) = y \ln x$.

³E occorrerebbe un'indagine approfondita che di solito esula dagli scopi di questo corso.

⁴ Attenzione: è casuale che i termini sulla diagonale principale siano uguali, mentre è naturale che lo siano quelli sulla diagonale secondaria (Teorema di Schwartz); è altresì casuale che la seconda e terza matrice hessiana siano uguali.

6.
$$f(x, y) = \ln(xy)$$
.

7.
$$f(x,y) = \frac{\ln x}{y}.$$

8.
$$f(x,y) = e^{x+xy^2}$$
.

Esercizio 11.2. Per le funzioni di seguito elencate dire se i punti indicati sono di massimo, minimo o sella (liberi); se possibile determinare se esistono altri punti di massimo, minimo, sella.

1.
$$f(x,y) = x^2y$$
, $P(0,0)$, $Q(0,1)$.

2.
$$f(x,y) = xy - x^2y^2$$
, $P(0,0)$, $Q(1,1)$, $R(1,-1)$.

3.
$$f(x,y) = x \ln y$$
, $P(1,-1)$, $Q(0,1)$.

4.
$$f(x,y) = x^2 e^y$$
, $P(0,0)$.

5.
$$f(x,y) = xye^{x+y}$$
, $P(1,0)$, $Q(-1,1)$, $R(1,-1)$.

6.
$$f(x,y) = x^2 e^{3y-x}$$
, $P(1,0)$, $Q(0,0)$.

7.
$$f(x,y) = e^{xy}$$
, $P(0,0)$.

8.
$$f(x,y) = \ln(xy+1)$$
, $P(0,0)$, $Q(2,0)$.

9.
$$f(x,y) = \ln(x^2 + y^2 + 2, P(0,0))$$
.

10.
$$f(x,y) = e^{xy-x}$$
, $P(0,1)$.

11.
$$f(x,y) = x^2 - e^{y^2}$$
, $P(0,0)$.

12.
$$f(x,y) = 2x^2 - y$$
, $P(1,1)$.

13.
$$f(x,y) = x^2y^3$$
, $P(-1,1)$, $Q(0,0)$.

14.
$$f(x,y) = \ln x - y^2$$
, $P(1,-1)$.

15.
$$f(x,y) = e^{xy} - y$$
, $P(1,0)$, $Q(0,1)$.

16.
$$f(x,y) = e^{xy} - y^2$$
, $P(0,0)$.

17.
$$f(x,y) = e^{xy} - xy$$
, $P(0,1)$, $Q(1,0)$, $R(1,1)$.

18.
$$f(x,y) = x^3y - xy^3$$
, $P(\sqrt{2},1)$.

19.
$$f(x,y) = x^2y - 2xy + xy^2$$
, $P(0,2)$, $Q(2,0)$.

Notazioni utilizzate

Le notazioni utilizzate in questo testo sono quelle di default nel sistema tipografico \LaTeX 2ε , notazioni che, nella maggior parte dei casi, concordano con quelle previste dalla normativa ISO 31-11.

Segnaliamo inoltre che, nella numerazione dei teoremi, definizioni, osservazioni, ecc., abbiamo scelto di usare una numerazione progressiva per capitolo. Altri testi usano invece numerazioni progressive separatamente per i teoremi, le definizioni, ecc. Si tratta naturalmente solo di una questione di gusto personale.

La scrittura di un testo contenente molta matematica è sempre un'impresa ardua e che richiede molto tempo e fatica. Un aiuto indispensabile è fornito da un sistema di composizione come quello che abbiamo adottato (e che costituisce ormai lo standard de facto per i testi scientifici). Per chi fosse interessato a conoscere \LaTeX 2 $_{\mathcal{E}}$ segnaliamo che si tratta di un sistema di composizione tipografica di livello professionale e assolutamente gratuito. Tutte le informazioni utili si possono trovare sul sito ufficiale della comunità degli sviluppatori, http://www.ctan.org/ e, in lingua italiana, sul sito degli Utilizzatori italiani di TEX e \LaTeX , http://www.guit.sssup.it/. Alcuni manuali introduttivi e consigli per iniziare si trovano anche sul sito personale del docente, http://www.batmath.it.

Elenco delle notazioni

```
"non" (negazione logica).
                                  "vel", o, oppure (disgiunzione logica).
                                  "et", e, e contemporaneamente (congiunzione logica).
                                  "implica", se ... allora ... (implicazione logica).
                                  "se e solo se" (equivalenza logica).
\Leftrightarrow
                                  Insieme dei numeri naturali: \mathbb{N} = \{0, 1, 2, \dots, n, \dots\}.
N
\mathbb{Z}
                                  Insieme dei numeri interi: \mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, \ldots \}.
                                  Insieme dei numeri razionali: \mathbb{Q} = \{ m/n \mid m \in \mathbb{Z}, n \in \mathbb{N}, n \neq 0 \}.
\mathbb{O}
\mathbb{R}
                                  Insieme dei numeri reali.
\mathbb{C}
                                  Insieme dei numeri complessi.
\mathbb{N}^+, \mathbb{Z}^+, \mathbb{Q}^+, \mathbb{R}^+
                                  Numeri naturali, interi, razionali, reali, maggiori di 0.
A, B, \ldots
                                  Notazione per gli insiemi.
A \subseteq B
                                  A è un sottoinsieme di B.
A \subset B
                                  A è un sottoinsieme proprio di B.
B \supseteq A
                                  B è un soprainsieme di A.
B \supset A
                                  B è un soprainsieme proprio di A.
A \setminus B
                                  Differenza tra gli insiemi A \in B.
[a,b]
                                  \{ x \in \mathbb{R} \mid a \le x \le b \}.
                                  \{ x \in \mathbb{R} \mid a < x < b \}.
a, b
[a,b]
                                  \{ x \in \mathbb{R} \mid a < x \le b \}.
                                  \{ x \in \mathbb{R} \mid a \le x < b \}.
[a,b[
                                  \{ x \in \mathbb{R} \mid x \ge a \}.
[a, +\infty[
                                  \{ x \in \mathbb{R} \mid x > a \}.
]a,+\infty[
                                  \{ x \in \mathbb{R} \mid x \leq a \}.
]-\infty,a]
```

Continua nella pagina successiva

Segue dalla pagina precedente

 $\begin{array}{ll}]-\infty,a[& \{x\in\mathbb{R}\mid x< a\,\}.\\ f\colon D\to C\,,\;x\mapsto f(x) & \text{Notazione per le funzioni.}\\ \exp(x)=\mathrm{e}^x & \text{Notazione per la funzione esponenziale di base e.}\\ \ln(x) & \text{Logaritmo in base e di x.}\\ \log(x) & \text{Logaritmo in base 10 di x.} \end{array}$

Osservazioni

- Per alcuni autori $\mathbb{N} = \{1, 2, \dots, n, \dots\}$, cioè l'insieme dei naturali non comprende lo zero.
- L'insieme dei numeri razionali è in realtà l'insieme delle frazioni, come più sopra definito, ma con una opportuna relazione che renda identiche due frazioni equivalenti. Inoltre nulla cambierebbe se si prendessero frazioni in cui anche il denominatore possa essere intero (naturalmente diverso da 0).
- La notazione utilizzata in questi appunti per gli insiemi non è l'unica possibile. Altri usano per esempio lettere maiuscole in grassetto: **A**, **B**, ... e questa scelta ha qualche indubbio vantaggio, in quanto anche i punti dello spazio sono abitualmente indicati con le lettere maiuscole corsive, con possibilità di confusione. In ogni caso tutto dovrebbe essere chiaro dal contesto.
- Molti usano ⊂ per indicare i sottoinsiemi (propri o no) e ⊊, o ⊊ per indicare i sottoinsiemi propri. Analoga osservazione per i soprainsiemi.
- Per indicare la differenza di due insiemi molti usano il simbolo A B.
- Per quanto riguarda le notazioni sui logaritmi è da segnalare che la convenzione da noi scelta è quella in uso nella maggior parte dei software di calcolo e, quasi sempre, anche nelle calcolatrici tascabili. Altri adottano la notazione $\log(x)$ per indicare il logaritmo in base e e la notazione $\log(x)$ o esplicitamente $\log_{10}(x)$ per indicare il logaritmo in base 10 del numero x.

Alfabeto greco

Riportiamo, per l'importanza che ha nelle notazioni matematiche, l'alfabeto greco con la relativa pronuncia.

alfa	α	A	nu (ni)	ν	N
beta	β	B	csi	ξ	Ξ
gamma	γ	Γ	omicron	o	O
delta	δ	Δ	pi	π	П
epsilon	ε	E	ro	ϱ	R
zeta	ζ	Z	sigma	σ	Σ
eta	η	H	tau	au	T
theta	ϑ	Θ	upsilon	v	Υ
iota	ι	I	fi	φ	Φ
cappa	κ	K	chi	χ	X
lambda	λ	Λ	psi	ψ	Ψ
mu (mi)	μ	M	omega	ω	Ω

Come si può notare, in molti casi le lettere greche maiuscole non differiscono nella grafia dalle lettere dell'alfabeto latino.

Segnaliamo anche una lettera dell'alfabeto ebraico di uso comune in matematica.

aleph ℵ

Indice analitico

algebra dei limiti, 68	equazioni con radicali, 21
asintoto obliquo, 81	equazioni di grado superiore, 20
asintoto orizzontale, 81	equazioni di primo grado in un'incognita, 19
asintoto verticale, 81	equazioni di secondo grado in un'incognita,
asse delle ascisse, 11	20
asse delle ordinate, 11	equazioni lineari in due incognite, 19
,	equazioni scomponibili in fattori, 21
baricentro di un triangolo, 12	,
	forme di indecisione, 62
cambiamento di base nei logaritmi, 48	forme indeterminate, 62
centro di un intervallo, 10	funzione biietttiva, 57
circonferenza nel piano cartesiano, 15	funzione biunivoca, 57
codominio, 35	funzione continua, 66
coefficiente angolare, 13	funzione convessa, 79
composta di due funzioni, 55	funzione crescente, 57
coordinate cartesiane nel piano, 11	funzione crescente a tratti, 57
coppia ordinata, 7	funzione decrescente, 57
cubo di un binomio, 2	funzione derivabile, 72
derivata destra, 73	funzione derivata prima, 72
derivata parziale prima, 103	funzione iniettiva, 57
derivata prima, 71	funzione suriettiva, 57
derivata sinistra, 73	funzioni, 35
derivate parziali seconde miste, 103	funzioni di due variabili, 89
derivate parziali seconde pure, 103	funzioni elementari, 55
diagramma a barre, 37	funzioni potenza, 43
diagramma a torta, 36	
diagrammi cartesiani, 37	grafici derivati, 50
differenza di due quadrati, 1	1 10
differenza di insiemi, 7	hessiano, 107
disequazione di primo grado in due incognite,	insieme complementare, 7
26	insieme delle parti, 6
disequazione di primo grado in un'incognita,	insieme immagine, 36
25	insieme universo, 7
disequazione di secondo grado in un'incogni-	,
ta, 27	insieme vuoto, 5 insiemi disgiunti, 6
disequazioni con radicali, 32	,
disequazioni con valori assoluti, 49	intersezione di insiemi, 6
disequazioni di secondo grado in due incogni-	intervalli, 9
te, 28	intorni dell'infinito, 62
distanza tra due punti, 12	intorno di un numero reale, 60
dominio, 35	limite, 62
40mmio, 00	11111100, 02

limite destro, 65 limite sinistro, 65 linee di livello, 94 logaritmo in base a di b , 46 logaritmo naturale, 47	S S S S S
massimo assolto, 77 matrice hessiana, 107 minimo assoluto, 77	t
numeri decimali, 8 numeri interi, 8 numeri naturali, 8 numeri razionali, 8 numeri reali, 9 numero di Nepero, 45	``
ordinata all'origine, 13 ordine di infinito, 69 ottimizzazione, 105	
parabola con asse orizzontale, 14 parabola con asse verticale, 14 pendenza, 13 piano tangente, 104 piecewise definition, 55 potenza di esponente naturale, 42 prodotto cartesiano, 8 prodotto di una somma per una differenza, 1 punti di sella, 97 punti interni a un intervallo, 10 punto angoloso, 73 punto di accumulazione, 60 punto di flesso, 79 punto di massimo relativo, 77 punto di minimo relativo, 77 punto interno, 102 punto medio di un segmento, 12 punto stazionario, 107	
quadrato di un binomio, 2	
raccoglimento a fattor comune, 1 raggio di un intervallo, 10 rapporto incrementale, 71 rappresentazione tabulare, 36 retta nel piano cartesiano, 12 retta reale estesa, 61 retta secante, 71 risoluzione grafica di sistemi, 22	
sistemi cartesiani monometrici, 40	

sistemi di disequazioni, 29 sistemi di equazioni in due incognite, 22 somma e differenza di due cubi, 2 soprainsieme, 6 sottoinsieme, 6 sangente inflessionale, 80 ınione di insiemi, 6 valore assoluto, 48 variazione di una grandezza, 13