Mathematics (Economics, Markets and Finance)

Luciano Battaia - Mesfin Geremew Genie

Exercises sheet 2

Exercise 1. Find the natural domain of the following functions and compute the equation of the tangent line through the given point.
a) $f(x)=\ln \left(x^{2}+3 x-4\right)$, through the point $(10, f(10))$.
b) $f(x)=\sqrt{x^{2}-x}$, through the point ($2, f(2)$.

Exercise 2. Find where the following functions are increasing/decreasing on their natural domain.
a) $f(x)=e^{\sqrt{x-3}}$.
b) $f(x)=4 x^{3}-x^{2}-3 x+4$.
c) $f(x)=\frac{x}{\mathrm{e}^{x^{2}}}$.
d) $f(x)=\ln \left(\mathrm{e}^{x}+\mathrm{e}^{-x}\right)$.
e) $f(x)=\frac{x^{2}-4}{x-3}$.

Exercise 3. For the following functions find all local maximum/minum points.
a) $f(x)=2 x^{3}-x^{2}+3 x-1$.
b) $f(x)=x \sqrt{x+1}$.
c) $f(x)=x+\sqrt{1-x}$.
d) $f(x)=2 \sqrt{x}-x$.
e) $f(x)=\frac{x}{\ln x}$.
f) $f(x)=\frac{\mathrm{e}^{x}}{x}$.
g) $f(x)=x \mathrm{e}^{x}$.

Exercise 4. For the following functions find the global maximum/minimum in the given interval.
$-f(x)=x+\sqrt{x}, \quad[0,4]$.
$-f(x)=x-2 \ln x, \quad[1, \mathrm{e}]$.
$-f(x)=\sqrt{4-x}, \quad-2,2]$.
Exercise 5. For the following functions find all the inflection points.

1. $f(x)=3 x^{5}-5 x^{4}+3 x-2$.
2. $f(x)=x \mathrm{e}^{x}$.
3. $f(x)=x^{2} \ln x$.

Exercise 6. Plot the graph of the following functions, in the given interval.

1. $f(x)=9 x^{3}-4 x, \mathbb{R}$.
2. $\left.\left.f(x)=\frac{x}{3}-\frac{3}{x}, \quad\right] 0,10\right]$.
3. $f(x)=\frac{1}{x^{2}+1}, \quad[-5,5]$.
