Mathematics 2 (Economics, Markets and Finance)

Luciano Battaia - Aregawi Gebremedhin Gebremariam

December 2, 2016

Exercises sheet 5

Solve, if they are consistent, the systems of Exercises 9, 10, 11, 12, 13 of sheet 4.
Exercise 1. Solve the following system for all values of the parameter $k \in \mathbb{R}$.

$$
\left\{\begin{array}{l}
x-k y+2 z=1 \\
2 x+y=0 \\
x+2 y-z=1 \\
x+k z=1
\end{array}\right.
$$

Exercise 2. Solve the following system for all values of the parameter $k \in \mathbb{R}$.

$$
\left\{\begin{array}{l}
k x-y+2 z=1 \\
2 x+y=0 \\
x+2 y-k z=1 \\
x+z=1
\end{array}\right.
$$

Exercise 3. Solve the following system for all values of the parameter $k \in \mathbb{R}$.

$$
\left\{\begin{array}{c}
k x+y-z=k \\
x-k z=2 \\
y+z=0
\end{array}\right.
$$

Exercise 4. Check if the vectors

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \\
2 \\
1 \\
-2
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{c}
1 \\
5 \\
5 \\
-3
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{c}
-1 \\
1 \\
3 \\
1
\end{array}\right)
$$

are linearly dependent or independent. If they are dependent write \vec{v}_{1} as a combination of the others.
Exercise 5. Check if the vectors

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{c}
2 \\
1 \\
3 \\
-2
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{l}
4 \\
1 \\
5 \\
3
\end{array}\right)
$$

are linearly dependent or independent. If they are dependent write \vec{v}_{1} as a combination of the others.

Exercise 6. Check if the vectors

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{l}
4 \\
1 \\
8
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{l}
2 \\
3 \\
4
\end{array}\right)
$$

are linearly dependent or independent. If they are dependent write \vec{v}_{1} as a combination of the others.
Exercise 7. Check if the vectors

$$
\vec{v}_{1}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{c}
-2 \\
3 \\
4
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{c}
4 \\
-1 \\
6
\end{array}\right)
$$

are linearly dependent or independent. If they are dependent write \vec{v}_{1} as a combination of the others.
Exercise 8. Check if the vectors

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \\
3 \\
-2
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{c}
2 \\
-4 \\
5
\end{array}\right)
$$

are linearly dependent or independent. If they are dependent write \vec{v}_{1} as a combination of the other one.
Exercise 9. Check if the vectors

$$
\vec{v}_{1}=\binom{1}{-2}, \quad \vec{v}_{2}=\binom{3}{5}, \quad \vec{v}_{3}=\binom{-2}{7}
$$

are linearly dependent or independent. If they are dependent write \vec{v}_{1} as a combination of the others.
Exercise 10. Check if the vectors

$$
\vec{v}_{1}=\left(\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right), \quad \vec{v}_{2}=\left(\begin{array}{c}
1 \\
0 \\
1 \\
-2
\end{array}\right), \quad \vec{v}_{3}=\left(\begin{array}{l}
2 \\
1 \\
3 \\
1
\end{array}\right), \quad \vec{v}_{4}=\left(\begin{array}{l}
1 \\
0 \\
2 \\
0
\end{array}\right)
$$

are linearly dependent or independent. If they are dependent write \vec{v}_{1} as a combination of the others.

