Mathematics 2 (Economics, Markets and Finance)

Luciano Battaia - Aregawi Gebremedhin Gebremariam

December 2, 2016

Exercises sheet 4

Exercise 1. Compute, if possible, the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right)
$$

Exercise 2. Compute, if possible, the inverse of the matrix

$$
A=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
3 & 2 & 0 & 0 \\
1 & 1 & 3 & 4 \\
2 & -1 & 2 & 3
\end{array}\right)
$$

Exercise 3. Given the matrices

$$
A=\left(\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right), \quad B=\left(\begin{array}{cc}
-2 & 7 \\
1 & -3
\end{array}\right)
$$

compute $A^{-1}, B^{-1}, C=A B, C^{-1}$. Prove that, for these matrices,

$$
C^{-1}=B^{-1} A^{-1}
$$

Exercise 4. Compute the rank of the matrix

$$
D=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 3 & 0 & 1 \\
7 & 7 & 6 & 9
\end{array}\right)
$$

Exercise 5. Compute the rank of the matrix

$$
A=\left(\begin{array}{llll}
1 & -2 & -1 & 3 \\
2 & -4 & -2 & 6 \\
3 & -6 & -3 & 9
\end{array}\right)
$$

Exercise 6. Solve the following system both using Cramer's rule and the inverse matrix method.

$$
\left\{\begin{array}{l}
3 x+2 y+z=5 \\
2 x+3 y+z=1 \\
2 x+y+3 z=11
\end{array} .\right.
$$

Exercise 7. Solve the following system both using Cramer's rule and the inverse matrix method.

$$
\left\{\begin{array}{l}
3 x+2 y+z=5 \\
2 x+3 y+z=1 \\
2 x+y+3 z=11
\end{array} .\right.
$$

Exercise 8. Solve the following system both using Cramer's rule and the inverse matrix method.

$$
\left\{\begin{array}{l}
2 x-y-4 z=3 \\
-x+3 y+z=-10 \\
3 x+2 y-2 z=-2
\end{array} .\right.
$$

Exercise 9. For the following system find the rank both of the coefficients matrix and the augmented matrix.

$$
\left\{\begin{array}{l}
x+3 y-z=1 \\
2 x-y+3 z=5
\end{array} .\right.
$$

Exercise 10. For the following system find the rank both of the coefficients matrix and the augmented matrix.

$$
\left\{\begin{array}{l}
2 x-2 y+3 z-t=2 \\
4 x-4 y-z-2 t=3
\end{array} .\right.
$$

Exercise 11. For the following system find the rank both of the coefficients matrix and the augmented matrix.

$$
\left\{\begin{array}{l}
2 x+y-z=3 \\
5 x+13 y-10 z=6 \\
x-3 y+2 z=2
\end{array} .\right.
$$

Exercise 12. For the following system find the rank both of the coefficients matrix and the augmented matrix.

$$
\left\{\begin{array}{c}
x-y+2 z=-1 \\
2 x+y-z=-3 \\
x-4 y+7 z=2
\end{array} .\right.
$$

Exercise 13. For the following system find the rank both of the coefficients matrix and the augmented matrix.

$$
\left\{\begin{array}{l}
2 x+y=13 \\
x-2 y=-11 \\
3 x-y=2 \\
4 x-3 y=-9
\end{array} .\right.
$$

