## Mathematics 2 (Economics, Markets and Finance)

## Luciano Battaia - Aregawi Gebremedhin Gebremariam

November 25, 2016

## Exercises sheet 3

Exercise 1. Consider the matrices

$$
A=\left(\begin{array}{lll}
2 & -1 & 3 \\
1 & -2 & 5
\end{array}\right), \quad B=\left(\begin{array}{cccc}
0 & 1 & -1 & 2 \\
3 & 2 & -1 & 1 \\
5 & -2 & 1 & 4
\end{array}\right), \quad C=\left(\begin{array}{cc}
5 & -1 \\
2 & 3 \\
6 & -2 \\
-3 & 1
\end{array}\right)
$$

a) Prove that

$$
(A B) C=A(B C)
$$

that is the associative property of matrix product.
b) Compute, if possible,

$$
C A B \text { and } B C A \text {. }
$$

c) Are there other possible products between these matrices?

## Exercise 2. Consider the matrices

$$
A=\left(\begin{array}{ccc}
2 & -1 & 3 \\
1 & -2 & 5
\end{array}\right), \quad B=\left(\begin{array}{ccc}
-2 & 3 & 5 \\
1 & 0 & 2
\end{array}\right), \quad C=\left(\begin{array}{cccc}
0 & 1 & -1 & 2 \\
3 & 2 & -1 & 1 \\
5 & -2 & 1 & 4
\end{array}\right)
$$

Prove that

$$
(A+B) C=A C+B C .
$$

Exercise 3. Consider the matrices

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & -3 & 1 \\
0 & 1 & -2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
-1 & 2 & 3 \\
2 & -2 & 1 \\
1 & 2 & 0
\end{array}\right)
$$

a) Compute $(A-B)^{2}$.
b) Compute $A^{2}-2 A B+B^{2}$.
c) Explain why you don't obtain the same result.

Exercise 4. Consider the matrices

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & -3 & 1 \\
0 & 1 & -2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
-1 & 2 & 3 \\
2 & -2 & 1 \\
1 & 2 & 0
\end{array}\right) .
$$

a) Compute $(A-B)(A+B)$.
b) Compute $A^{2}-B^{2}$.
c) Explain why you don't obtain the same result.

Exercise 5. Consider the matrices

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & -3 & 1 \\
0 & 1 & -2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
-1 & 2 & 3 \\
2 & -2 & 1 \\
1 & 2 & 0
\end{array}\right) .
$$

Prove that ${ }^{(1)}$

$$
(A B)^{\top}=B^{\top} A^{\top} .
$$

Exercise 6. Consider the matrix

$$
A=\left(\begin{array}{cc}
2 & 1 \\
-4 & -2
\end{array}\right) .
$$

a) Compute the product $A A$.
b) Is the previous result in contrast with any of the properties of matrix product?
c) Is there any similar behaviour in the set of real numbers?

Exercise 7. Consider the matrix

$$
A=\left(\begin{array}{ccc}
2 & -2 & -4 \\
-1 & 3 & 4 \\
1 & -2 & -3
\end{array}\right) .
$$

a) Compute the product $A A$.
b) What can you conclude about $A^{n}$, for all $n \in \mathbb{N}, n>0$ ?
c) Is there any similar behaviour in the set of real numbers?

Exercise 8. Compute the determinant of the following matrices, both using Sarrus rule and cofactor expansion.

$$
A=\left(\begin{array}{ccc}
2 & -1 & 3 \\
1 & 0 & 5 \\
-2 & -1 & 6
\end{array}\right), \quad B=\left(\begin{array}{ccc}
2 & 1 & 3 \\
-3 & 2 & 1 \\
0 & 1 & 0
\end{array}\right) .
$$

Exercise 9. Compute the determinant of the following matrices

$$
A=\left(\begin{array}{cccc}
2 & -1 & 3 & 1 \\
0 & 1 & -2 & 1 \\
3 & 4 & -2 & 5 \\
1 & 1 & 2 & -3
\end{array}\right), \quad B=\left(\begin{array}{ccccc}
1 & -2 & 3 & 1 & 5 \\
1 & 0 & 0 & 0 & 1 \\
2 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & -2 \\
3 & 0 & 0 & 1 & -1
\end{array}\right) .
$$

[^0]Exercise 10. Consider the matrices

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & -3 & 1 \\
0 & 1 & -2
\end{array}\right), \quad B=\left(\begin{array}{ccc}
-1 & 2 & 3 \\
2 & -2 & 1 \\
1 & 2 & 0
\end{array}\right) .
$$

Prove that

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B) .
$$

Exercise 11. Consider the matrix

$$
A=\left(\begin{array}{ccc}
2 & 1 & -1 \\
1 & -3 & 1 \\
0 & 1 & -2
\end{array}\right)
$$

a) Prove that if you interchange two rows the determinant changes sign.
b) Prove that the transpose matrix has the same determinant.
c) Prove that if you multiply a row by a constant, say 3, the determinant is multiplied by the same constant.
d) Prove that the determinant is unchanged if you a multiple of a row is added to a different row.


[^0]:    ${ }^{1}$ In contrast with the textbook we use $A^{\top}$ for the transpose of the matrix $A$, as this symbol is more consistent with the international norm ISO 80000-1: 2013

