Mathematics 2 (Economics, Markets and Finance)

Luciano Battaia - Aregawi Gebremedhin Gebremariam

November 18, 2016

Exercises sheet 2

Exercise 1. Given the function

$$
f(x, y)=\mathrm{e}^{x-y+2}
$$

and the constraint $\sqrt{x-y+x y}=1$, write the Lagrangian function and compute its partial derivatives.
Exercise 2. Given the function

$$
f(x, y)=\ln (x-y)
$$

and the constraint $x^{2}-y^{2}=3$, write the Lagrangian function and compute its partial derivatives.
Exercise 3. Maximize and minimize the function

$$
f(x, y)=x+y+1
$$

subject to $x^{2}+y^{2}=2$.
Exercise 4. Maximize and minimize the function

$$
f(x, y)=x y
$$

subject to $x^{2}+y^{2}=4$.
Exercise 5. Maximize and minimize the function

$$
f(x, y)=x^{2}-y^{2}
$$

subject to $x^{2}+y^{2}=1$.
Use both Lagrangian multipliers and the elementary method.
Exercise 6. Given the function

$$
f(x, y)=(x-2)\left(y-\frac{4}{3}\right)
$$

and the subset of its domain

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x \leq 3,0 \leq y \leq \frac{x^{2}}{3}\right\}
$$

discuss whether f bas on A a maximum and a minimum, justifying your answer. If yes, compute them, without using Lagrangian multipliers.

Exercise 7. Given the function

$$
f(x, y)=x^{3}-3 x^{2}+3 x+y^{2}-4 y,
$$

a) find its local maxima and minima;
b) find its global maximum and minimum in the square whose vertices are $(0,0),(4,0),(4,4),(0,4)$, without the use of Lagrangian multipliers.

Exercise 8. Given the function

$$
f(x, y)=x+y+1
$$

find its maximum and minimum on the set

$$
A=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 2\right\} .
$$

Exercise 9. Compute the global maximum and minimum of

$$
f(x, y)=x^{4}+y^{4}-8\left(x^{2}+y^{2}\right)
$$

in the subset of the plane given by the inequality $x^{2}+y^{2} \leq 9$.

