Mathematics 2 (Economics, Markets and Finance)

Luciano Battaia - Aregawi Gebremedhin Gebremariam

November 11, 2016

Exercises sheet 1

Exercise 1. For the following functions of two variables compute the natural domain and plot it.
a) $f(x, y)=\sqrt{3 x^{2}+3 y^{2}-27}$.
b) $f(x, y)=x \ln (y+1)$.
c) $f(x, y)=\frac{1}{x^{2}+y^{2}-1}$.
d) $f(x, y)=\sqrt{x} \sqrt{y}$.
e) $f(x, y)=\sqrt{x y}$.
f) $f(x, y)=\sqrt{4-x^{2}-y^{2}}$.
g) $f(x, y)=\ln \left(x^{2}+y^{2}+1\right)$.
b) $f(x, y)=\ln (x+2 y-1)$.

Exercise 2. For the following functions of two variables compute the two partial derivatives.
a) $f(x, y)=x^{3}-3 x^{2}+3 x+y^{2}-4 y$.
b) $f(x, y)=\ln \left(x^{2}+y^{2}\right)$.
c) $f(x, y)=\sqrt{x^{2}+1}+\sqrt{y^{2}+1}$.
d) $f(x, y)=x y^{2}+x^{2} y+x-y+2$.
e) $f(x, y)=x \sqrt{y}+y \sqrt{x}$.

Exercise 3. For the following functions of two variables compute the four second order partial derivatives and check the validity of the theorem of Young (or Schwartz).
a) $f(x, y)=x^{3} y^{2}+x y^{2}+x y$.
b) $f(x, y)=\ln \left(x^{2}+y^{2}+1\right)$.
c) $f(x, y)=\frac{x}{x+y}$.

Exercise 4. For the following functions find all local maximum, minimum and saddle points.
a) $f(x, y)=x \ln y$.
b) $f(x, y)=\mathrm{e}^{x y-x}$.
c) $f(x, y)=\mathrm{e}^{x y}-y^{2}$.
d) $f(x, y)=\ln \left(x^{2}+y^{2}+2\right)$.
e) $f(x, y)=x^{2}-y^{2}-2 y-x y$.

Exercise 5. Consider the function

$$
f(x, y)=\sqrt{4 x^{2}+4 y^{2}-36}:
$$

a) compute the natural domain and plot it; compute the level curves of f and plot some of them;
b) highlight those level curves which intersect the line of equation $4 x+y=17$.

Exercise 6. For the following functions plot the level curves at the given heights, if existing.
a) $f(x, y)=x^{2}+y^{2}$, at the heights $-1,0,1$.
b) $f(x, y)=x^{2}-y$, at the beight 1 .
c) $f(x, y)=x+2 y-3$, at the heights $0,1,2$.
d) $f(x, y)=\mathrm{e}^{x+1}-y$, at the height 4 .

