Mathematics (Economics, Markets and Finance)

Luciano Battaia - Mesfin Geremew Genie

September 23, 2018

Exercises sheet 1

Exercise 1. Find the natural domain of the functions

$$
f(x)=\sqrt{\frac{x^{3}}{x-1}}, \quad g(x)=\sqrt[3]{\frac{x^{3}}{x-1}},
$$

and explain why the domain is different for the two functions.
Exercise 2. Find the natural domain of the function

$$
f(x)=\sqrt{x+1}+\sqrt{2-x}
$$

Exercise 3. Find the natural domain of the function

$$
f(x)=\ln \left(x^{2}-3 x+2\right) .
$$

NB: "In" means "natural logarithm".
Exercise 4. Plot the graph of the following function

$$
f(x)= \begin{cases}x^{2}, & \text { if } x<-1 \\ x+2, & \text { if }-1 \leq x \leq 1 ; \\ -x+2, & \text { if } x>1\end{cases}
$$

Using the graph, find the limits of this function as x tends to $-1,1,-\infty,+\infty$. Is this function one-to-one? Find the range of this function.

Exercise 5. Given the function

$$
f(x)=x^{3}-x^{2}-\frac{x^{4}}{4}
$$

a) find the natural domain;
b) find the subset of \mathbb{R} where the $f(x)>0$;
c) find the limits

$$
\lim _{x \rightarrow-\infty} f(x), \quad \lim _{x \rightarrow+\infty} f(x) ;
$$

d) compute the first derivative and find where this derivative is positive or negative.

Exercise 6. Compute the first derivative of the following functions.
a) $f(x)=4 x^{2}-\frac{7}{x^{2}}+5 \sqrt[3]{x}$
b) $f(x)=x \ln x-x+1$
c) $f(x)=\mathrm{e}^{x} \ln x$
d) $f(x)=\frac{4 x^{4}-7}{1+x^{2}}$
e) $f(x)=\frac{\ln x+x}{x+\sqrt{x}}$
f) $f(x)=\mathrm{e}^{\frac{x}{x+1}}$
g) $f(x)=\sqrt{1+\ln x}$
b) $f(x)=\left(1+x^{2}\right)^{2}$
i) $f(x)=\left(1+x^{2}\right)^{12}$
j) $f(x)=x^{2} \ln \left(x \mathrm{e}^{x}\right)$
k) $f(x)=\frac{1}{x^{4}+1}$
l) $f(x)=x \sqrt{x^{2}+1}$

Exercise 7. Say whether the following function is continuous

$$
f(x)= \begin{cases}-2 x, & \text { if } x<0 ; \\ 2 x, & \text { if } 0 \leq x \leq 1 ; \\ 3, & \text { if } x>1 .\end{cases}
$$

Exercise 8. Say for what values of the real parameters a and b the following function is continuous and differentiable

$$
f(x)= \begin{cases}\ln x, & \text { if } x \geq 1 ; \\ a x-b x^{2}, & \text { if } x<1\end{cases}
$$

Exercise 9. Say for what values of the real parameters a and b the following function is continuous and differentiable

$$
f(x)= \begin{cases}a x, & \text { if } x \leq-1 ; \\ 2-b x^{2}, & \text { if } x>-1 .\end{cases}
$$

