Università Ca' Foscari di Venezia - Dipartimento di Economia - A.A.2016-2017 Mathematics (Curriculum Economics, Markets and Finance)

First call - Prof. Luciano Battaia
 2017/01/10

Schematic solution
Exercise 1. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)= \begin{cases}a x \mathrm{e}^{x}, & \text { if } x \leq 0 ; \\ b-\ln (x+1), & \text { if } x>0 .\end{cases}
$$

a) Find a and b so that the function is continuous and differentiable everywhere.
b) Find the limit of f as $x \rightarrow+\infty$.
c) Observe that

$$
x \mathrm{e}^{x}=\frac{x}{\mathrm{e}^{-x}}
$$

and find the limit of f as $x \rightarrow-\infty$.
d) Find all local maximum and minimum points of f.
e) Say whether f has global maximum and/or minimum.
f) Find the inflection points of f in the interval $]-\infty, 0[$.

Solution. As

$$
\lim _{x \rightarrow 0^{-}} f(x)=0 \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} f(x)=b,
$$

the condition for continuity is $b=0$. Next let's derive the function

$$
f^{\prime}(x)= \begin{cases}a \mathrm{e}^{x}+a x \mathrm{e}^{x}, & \text { if } x<0 \\ -\frac{1}{x+1}, & \text { if } x>0\end{cases}
$$

As

$$
\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=a \quad \text { and } \quad \lim _{x \rightarrow 0^{+}} f^{\prime}(x)=-1,
$$

the condition for differentiability is $a=-1$.
We next have

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty}-\ln (x+1)=-\infty
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty}-x \mathrm{e}^{x}=\lim _{x \rightarrow-\infty}-\frac{x}{\mathrm{e}^{-x}} \stackrel{(H)}{=} \lim _{x \rightarrow-\infty} \frac{1}{\mathrm{e}^{-x}}=\left[\frac{1}{+\infty}\right]=0 .
$$

The derivative of f is

$$
f^{\prime}(x)= \begin{cases}-\mathrm{e}^{x}-x \mathrm{e}^{x}=-\mathrm{e}^{x}(x+1), & \text { if } x \leq 0 ; \\ -\frac{1}{x+1}, & \text { if } x>0 .\end{cases}
$$

This derivative is positive for $x<-1$, negative for $x>-1$, and we have $f^{\prime}(-1)=0$. This means we have only a local maximum at $x=-1$, and no local minimum points.

As a consequence of previous calculations and limits we can conclude that the function has a global maximum (at $x=-1$) and no global minimum.

For $\mathrm{x}<0$ the second derivative is

$$
f^{\prime \prime}(x)=-\mathrm{e}^{x}-\mathrm{e}^{x}-x \mathrm{e}^{x}=-\mathrm{e}^{x}(x+2) .
$$

This derivative is positive for $x<-2$ and negative for $-2<x<0$, so $x=-2$ is an inflection point.

Exercise 2. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$

$$
f(x)=x^{2}+x
$$

a) Find the antiderivative $F(x)$ for which $F(1)=1$.
b) Find the local maximum and minimum points of F.
c) Find the global maximum and minimum of F (if they exist).
d) Find the inflection points od F.

Solution. With a straightforward calculation we find that

$$
F(x)=\frac{x^{3}}{3}+\frac{x^{2}}{2}+c .
$$

So we must have

$$
F(1)=\frac{1}{3}+\frac{1}{2}+c=1 \Rightarrow c=\frac{1}{6} .
$$

As $F^{\prime}(x)=f(x)=x^{2}+x$, the derivative is positive for $x<-1$ and for $x>0$, while it is negative in $-1<x<0$. This means that there is a maximum for F at $x=-1$ and a minimum at $x=0$.

The calculation of the limit of F as $x \rightarrow+\infty$ is straightforward and its value is $+\infty$. As regards $-\infty$ we have

$$
\lim _{x \rightarrow-\infty}=x^{3}\left(\frac{1}{3}+\frac{1}{2 x}+\frac{1}{6 x^{3}}\right)=-\infty(1+0+0)=-\infty .
$$

This means we have no global maximum or minimum.
The second derivative of F is $2 x+1$: the only inflection point is $x=-1 / 2$.
Important observation. This is a very simple exercise and calculations are straightforward!
Exercise 3. Consider the two variables real function

$$
f(x, y)=x^{2}+y^{2}+x^{2} y-2 y .
$$

a) Find all local maximum, minimum and saddle points.
b) Find global maximum and minimum on the constraint $x^{2}+y^{2}=1$ without using Lagrangian multipliers.

Solution. The necessary conditions are

$$
\left\{\begin{array}{l}
f_{x}^{\prime}=2 x+2 x y=0 \\
f_{y}^{\prime}=2 y+x^{2}-2=0
\end{array}\right.
$$

From the first equation we find $2 x(1+y)=0$, that is $x=0$ or $y=-1$. Substituting $x=0$ in the second equation we find $y=1$. Substituting $y=-1$ in the second equation we obtain $x^{2}-4=0$ that is $x= \pm 2$. We have three critical points: $(0,1),(-2,-1)$ and $(2,-1)$. The second derivatives of the function are

$$
f_{x x}^{\prime \prime}=2+2 y, \quad f_{x y}^{\prime \prime}=f_{y x}^{\prime \prime}=2 x, \quad f_{y y}^{\prime \prime}=2
$$

The Hessians are:

$$
H(0,1)=\left|\begin{array}{ll}
4 & 0 \\
0 & 2
\end{array}\right|=8>0, \quad H(-2,-1)=\left|\begin{array}{cc}
0 & -4 \\
-4 & 2
\end{array}\right|=-16<0, \quad H(2,-1)=\left|\begin{array}{ll}
0 & 4 \\
4 & 2
\end{array}\right|=-16<0
$$

As $f_{x x}^{\prime \prime}(0,1)=4$, we conclude that $(0,1)$ is a minimum point, the others are saddle points.
For the second part it is convenient to rewrite the constraint as $x^{2}=1-y^{2}$, with $-1 \leq y \leq 1$. Substituting this expression of the constraint in the function f we obtain a single variable function, that we'll call g :

$$
g(y)=1-y^{2}+y^{2}+\left(1-y^{2}\right) y-2 y=-y^{3}-y+1 .
$$

The derivative of this one variable function is $g^{\prime}(y)=-3 y^{2}-1$ and is always negative: the function g is always decreasing. So the maximum is on the left boundary of the domain $(y=-1)$) and the minimum on the right boundary $(y=1)$. The corresponding maximum and minimum values for g (and also for f) are 3 and -1 .

Exercise 4. Consider the linear system

$$
\left\{\begin{array}{l}
x+2 y-z=4 \\
2 x-y+2 z=-1 \\
2 x+z=1
\end{array}\right.
$$

Prove that it is consistent and solve it, both using Cramer's rule and the inverse matrix strategy.
Solution. The augmented matrix of the system is:

$$
A \left\lvert\, b=\left(\begin{array}{ccc|c}
1 & 2 & -1 & 4 \\
2 & -1 & 2 & -1 \\
2 & 0 & 1 & 1
\end{array}\right)\right.
$$

As the matrix A is a 3×3 one, while $A \mid b$ is a 3×4 one, the rank of both must be less than or equal to 3 . The determinant of A is 1 . So the rank of A is 3 , and, a fortiori 3 is also the rank of $A \mid b$: the system is consistent.

The solution by Cramer's rule is straightforward:

$$
x=\frac{\left|\begin{array}{ccc}
4 & 2 & -1 \\
-1 & -1 & 2 \\
1 & 0 & 1
\end{array}\right|}{1}=1, \quad y=\frac{\left|\begin{array}{ccc}
1 & 4 & -1 \\
2 & -1 & 2 \\
2 & 1 & 1
\end{array}\right|}{1}=1, \quad z=\frac{\left|\begin{array}{ccc}
1 & 2 & 4 \\
2 & -1 & -1 \\
2 & 0 & 1
\end{array}\right|}{1}=-1 .
$$

As the determinat of A is not 0 , the matrix has an inverse and we easily obtain:

$$
A^{-1}=\left(\begin{array}{ccc}
-1 & -2 & 3 \\
2 & 3 & -4 \\
2 & 4 & -5
\end{array}\right)
$$

To solve the system using the inverse matrix strategy we must multiply the inverse by the column vector \vec{b} :

$$
\left(\begin{array}{ccc}
-1 & -2 & 3 \\
2 & 3 & -4 \\
2 & 4 & -5
\end{array}\right)\left(\begin{array}{c}
4 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right)
$$

exactly as before.
Exercise 5. Consider the vectors

$$
\vec{v}_{1}=\left(\begin{array}{c}
1 \\
-2 \\
0 \\
0
\end{array}\right) \quad \vec{v}_{2}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right) \quad \vec{v}_{3}=\left(\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right) \quad \vec{v}_{4}=\left(\begin{array}{c}
k \\
-1 \\
2 \\
-k
\end{array}\right)
$$

a) Find for which values of k they are linearly independent.
b) Set $k=1$ and write \vec{v}_{4} as a linear combination of the others.

Solution. The 4 vectors are independent if and only if the matrix whose columns are the given vectors has rank 4 . As this matrix is a 4×4 matrix we check its determinant:

$$
\operatorname{Det}\left(\begin{array}{cccc}
1 & 0 & 0 & k \\
-2 & 1 & 0 & -1 \\
0 & 1 & -1 & 2 \\
0 & 0 & 1 & -k
\end{array}\right)=-3+3 k
$$

This means that the vectors are independent if and only if $k \neq 1$.
As a consequence of the previous result, if $k=1$ the vectors are dependent:at least one is a linear combination of the others. We need to check if \vec{v}_{4} is a linear combination of the others:

$$
\vec{v}_{4}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}
$$

that is

$$
\left(\begin{array}{c}
1 \\
-1 \\
2 \\
-1
\end{array}\right)=c_{1}\left(\begin{array}{c}
1 \\
-2 \\
0 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{l}
0 \\
1 \\
1 \\
0
\end{array}\right)+c_{3}\left(\begin{array}{c}
0 \\
0 \\
-1 \\
1
\end{array}\right)=\left(\begin{array}{c}
c_{1} \\
-2 c_{1}+c_{2} \\
c_{2}-c_{3} \\
c_{3}
\end{array}\right) .
$$

This condition can be writtem as a linear system:

$$
\left\{\begin{array}{l}
c_{1}=1 \\
-2 c_{1}+c_{2}=-1 \\
c_{2}-c_{3}=2 \\
c_{3}=-1
\end{array}\right.
$$

whose solution is immediate: $c_{1}=1, c_{2}=1, c_{3}=-1$. The linear combination is

$$
\vec{v}_{4}=\vec{v}_{1}+\vec{v}_{2}-\vec{v}_{3} .
$$

