Exam type exercises 1

Luciano Battaia

November 18, 2016

These exercises are samples of the exercises that will be proposed at the written exam. Only a selected number of questions for each exercise will be proposed in the actual problems at the exam. A great part of these exercises have been solved in class.

Exercise 1. Consider the function

$$
f(x, y)=x \ln y^{2} .
$$

a) Find the natural domain.
b) Say if this domain is closed, opened, bounded.
c) Find all local maximum, minimum, saddle points.

Exercise 2. Consider the function

$$
f(x, y)=\sqrt{\left(x^{2}-9\right)\left(y^{2}-25\right)} .
$$

a) Find the natural domain.
b) Compute the first and second order derivatives.

Exercise 3. Consider the function

$$
f(x, y)=\frac{7}{x^{2}+y^{2}-1} .
$$

a) Find the natural domain.
b) Say if this domain is closed, opened, bounded.
c) Find all local maximum, minimum, saddle points.

Exercise 4. Consider the function

$$
f(x, y)=2 x^{2}-8 x+y^{2}-8 y+7 .
$$

a) Find the natural domain.
b) Find its global maximum and minimum in the set of the plane given by the inequalities

$$
x \geq 0, \quad y \leq 4, \quad y \geq 2 x .
$$

Exercise 5. Consider the function

$$
f(x, y)=\frac{1}{x^{2}+y^{2}-1} .
$$

a) Find the natural domain.
b) Plot the level curves at levels 0, 1, 2, if existing.

Exercise 6. Consider the function

$$
f(x, y)=x^{2} y-x y^{2}+x y .
$$

a) Find the natural domain.
b) Find all local maximum, minimum, saddle points.

Exercise 7. Consider the function

$$
f(x, y)=x^{2}-8 x+y^{2}+7 .
$$

a) Find the natural domain.
b) Find its global maximum and minimum in the set given by the inequalities

$$
y \geq 0, \quad x^{2}+y^{2} \leq 1 .
$$

Exercise 8. Consider the function

$$
f(x, y)=x^{2}+(y+1)^{2} .
$$

a) Find the features of te level curves $f(x, y)=k$, where k is a real number and plot some of them.
b) Find its global maximum and minimum in the bounded subset of the whose boundary is on the lines

$$
y=0, \quad x+y=1, \quad-x+y=1 .
$$

Exercise 9. Consider the function

$$
f(x, y)=x^{2}+y^{2} .
$$

a) Find its global maximum and minimum in the set given by the inequalities

$$
x^{2}+(y+1)^{2} \leq 4, \quad x \geq 0, \quad y \geq 0 .
$$

Exercise 10. Consider the function

$$
f(x, y)=x^{2} .
$$

Find its global maximum and minimum on the set given by the equation $x-2 y+2=0$.
Exercise 11. Consider the function

$$
f(x, y)=x+y+1 .
$$

Find its global maximum and minimum on the set given by the equation $x^{2}-y+3=0$.
Exercise 12. Consider the function

$$
f(x, y)=x-y^{2} .
$$

Find its global maximum and minimum on the set given by the equation $x-y^{4}-1=0$.
Exercise 13. Consider the function

$$
f(x, y)=x^{2}-y .
$$

Find its global maximum and minimum on the set given by the equation $x^{3}-y=0$.
Exercise 14. Consider the function

$$
f(x, y)=x y .
$$

Find its global maximum and minimum on the set given by the equation $x^{2}+y^{2}+x y-1=0$, given that the set is an ellipse.

Exercise 15. Maximize/minimize the function $f(x, y)=x y$ on the set given bay the equation $3 x+5 y=90$, both using the elementary method and Lagrangian multiplier method.

Exercise 16. Maximize/minimize the function $f(x, y)=x^{3} y^{5}$ on the set given bay the equation $x+y=8$, both using the elementary method and Lagrangian multiplier method.

Exercise 17. Find all local maximum, minimum and saddle points of the function $f(x, y)=e^{x+y}\left(x^{2}+y\right)$.
Exercise 18. Find all local maximum and minimum points of the function $f(x, y)=x+y$ on the set given by $x y-1=0$ using Lagrangian multiplier method.

Exercise 19. Find the global maximum and minimum of the function $f(x, y)=x^{2}+y^{2}-x y+x+y$ on the set given by the inequalities

$$
x \leq 0, \quad y \leq 0, x+y \geq-3 .
$$

Exercise 20. Find the global maximum and minimum of the function $f(x, y)=(1+x y)^{2}$ on the set given by the equation $x^{2}+y^{2}=1$.

Exercise 21. Find all local maximum, minimum and saddle points of the function $f(x, y)=x y \mathrm{e}^{-\left(x^{2}+y^{2}\right) / 2}$.

