Università Ca’ Foscari di Venezia - Dipartimento di Economia - A.A.2016-2017
Mathematics -1 (Curriculum Economics, Markets and Finance)

Partial Examination - A - Prof. Luciano Battaia 2016/03/11

Schematic solution of exercises

Code A

Exercise 1. Given the function

$$
f(x)= \begin{cases}\mathrm{e}^{x}-a, & \text { if } x<0 \\ -2 x^{2}+x+2, & \text { if } 0 \leq x \leq 1, \\ \ln (2 x-1)+b, & \text { if } x>1\end{cases}
$$

a) find a and b so that that the function is continuous everywhere;
b) say whether the obtained function is differentiable at $x=0$;
c) say whether the obtained function is differentiable at $x=1$;
d) compute

$$
\int_{-1}^{1} f(x) \mathrm{d} x .
$$

Solution. The only problems for continuity are at $x=0$ and $x=1$. Computing the limits as $x \rightarrow 0$ and $x \rightarrow 1$ we obtain what follows.

$$
\begin{gathered}
\lim _{x \rightarrow 0^{-}} \mathrm{e}^{x}-a=1-a, \quad \lim _{x \rightarrow 0^{+}}-2 x^{2}+x+2=2 \Rightarrow 1-a=2 \Rightarrow a=-1 . \\
\lim _{x \rightarrow 1^{-}}-2 x^{2}+x+2=1, \quad \lim _{x \rightarrow 1^{+}} \ln (2 x-1)+b=b \Rightarrow b=1 .
\end{gathered}
$$

With these conditions the function can be written as

$$
f(x)=\left\{\begin{array}{ll}
\mathrm{e}^{x}+1, & \text { if } x<0 \\
-2 x^{2}+x+2, & \text { if } 0 \leq x \leq 1 \\
\ln (2 x-1)+1, & \text { if } x>1
\end{array} .\right.
$$

Computing the first derivative for $x \neq 0$ and $x \neq 1$ we obtain

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
\mathrm{e}^{x}, & \text { if } x<0 \\
-4 x+1, & \text { if } 0<x<1 \\
\frac{2}{2 x-1}, & \text { if } x>1
\end{array} .\right.
$$

In order to check differentiability at 0 and 1 we need the limits of this derivative.

$$
\lim _{x \rightarrow 0^{-}} \mathrm{e}^{x}=1, \quad \lim _{x \rightarrow 0^{+}}-4 x+1=1 \Rightarrow \text { the function is differentiable. }
$$

$$
\lim _{x \rightarrow 1^{-}}-4 x+1=-3, \quad \lim _{x \rightarrow 1^{+}} \frac{2}{2 x-1}=2 \Rightarrow \text { the function is not differentiable. }
$$

For the definite integral we must split the interval in two parts.

$$
\begin{aligned}
\int_{-1}^{1} f(x) \mathrm{d} x=\int_{-1}^{0}\left(\mathrm{e}^{x}+1\right) \mathrm{d} x & +\int_{-1}^{1}\left(-2 x^{2}+x+2\right) \mathrm{d} x= \\
= & {\left[\mathrm{e}^{x}+x\right]_{-1}^{0}+\left[-\frac{2 x^{3}}{3}+\frac{x^{2}}{2}+2 x\right]_{0}^{1}=} \\
& =\left[(1+0)-\left(\mathrm{e}^{-1}-1\right)\right]+\left[\left(-\frac{2}{3}+\frac{1}{2}+2\right)-(0+0+0)\right]=\ldots
\end{aligned}
$$

Exercise 2. Given the function

$$
f(x)=x^{2}-9
$$

a) find its antiderivative, say $F(x)$, for which $F(0)=-2$;
b) compute the local maximum and minimum points of $F(x)$;
c) say whether F has global maximum and/or minimum;
d) compute the inflection points of F.

Solution. The set of all antiderivatives of f is

$$
\int f(x) \mathrm{d} x=\frac{x^{3}}{3}-9 x+c
$$

The conditions $F(0)=-2$ is satisfied if

$$
\frac{0}{3}-9 \cdot 0+c=-2 \quad \Rightarrow \quad c=-2 .
$$

The sought antiderivative is

$$
F(x)=\frac{x^{3}}{3}-9 x-2 .
$$

As the derivative of F is obviously f, that is $F^{\prime}(x)=x^{2}-9$, we conclude that F^{\prime} is positive if $x<-3$ or $x>3$, negative if $-3<x<3$. So -3 is a local maximum point and 3 is a local minimum point.

We have

$$
\lim _{x \rightarrow \pm \infty} F(x)=\lim _{x \rightarrow \pm \infty} x^{3}\left(\frac{1}{3}-\frac{9}{x^{2}}-\frac{2}{x^{3}}\right)= \pm \infty\left(\frac{1}{3}-0-0\right)= \pm \infty .
$$

As a consequence of these limits the function has no global maximum nor global minimum.
Next we easily obtain $F^{\prime \prime}(x)=2 x$ and this second derivative ${ }^{1}$ is negative as $x<0$, positive as $x>0$: $x=0$ is the only inflection point.

Exercise 3. Given the function

$$
f(x)= \begin{cases}\ln (x)+2, & \text { if } x>1 \\ a x^{3}-b x+2, & \text { if } x \leq 1\end{cases}
$$

[^0]a) find a and b such that f is everywhere continuous and differentiable;
b) find the limits
$$
\lim _{x \rightarrow+\infty} f(x), \lim _{x \rightarrow-\infty} f(x) ;
$$
c) consider the function only in the interval $[-1,1]$ and find its global maximum and minimum.

Solution. The only point where the function can be discontinuous or not differentiable is $x=1$. In order to check continuity we compute the limits of the functions as $x \rightarrow 1$.

$$
\lim _{x \rightarrow 1^{-}} \ln (x)+2=2, \quad \lim _{x \rightarrow 1^{+}} a x^{3}-b x+2=a-b+2 \Rightarrow 2=a-b+2
$$

Let's now compute the derivative for all $x \neq 1$:

$$
f^{\prime}(x)= \begin{cases}\frac{1}{x}, & \text { if } x>1 \\ 3 a x^{2}-b, & \text { if } x<1\end{cases}
$$

In order to check differentiability we compute the limits of this derivative as $x \rightarrow 1$.

$$
\lim _{x \rightarrow 1^{-}} \frac{1}{x}=1, \quad \lim _{x \rightarrow 1^{+}} 3 a x^{2}-b=3 a-b \quad \Rightarrow \quad 1=3 a-b
$$

The function is continuous and differentiable if and only if

$$
\left\{\begin{array}{l}
2=a-b+2 \\
1=3 a-b
\end{array} \quad \Rightarrow \quad a=b=\frac{1}{2} .\right.
$$

Next we obtain

$$
\begin{gathered}
\lim _{x \rightarrow+\infty} \ln (x)+2=+\infty+2=+\infty \\
\lim _{x \rightarrow+\infty} \frac{x^{3}}{2}-\frac{x}{2}+2=\lim _{x \rightarrow+\infty} x^{3}\left(\frac{1}{2}-\frac{1}{2 x^{2}}+\frac{2}{x^{3}}\right)=-\infty\left(\frac{1}{2}-0+0\right)=-\infty
\end{gathered}
$$

In the interval $[-1,1]$ the function has a global maximum and minimum because it is continuous and the interval is closed and bounded. We have, in this interval,

$$
F^{\prime}(x)=\frac{3 x^{2}}{2}-\frac{1}{2}
$$

This derivative is positive if $x<-\sqrt{3} / 3$ or $x>\sqrt{3} / 3$, while it is negative if $-\sqrt{3} / 3<x<\sqrt{3} / 3$. So $x=-\sqrt{3} / 3$ is a local maximum point and $x=\sqrt{3} / 3$ a local minimum point. Furthermore we have $F(-1)=2$ and $F(1)=2$. We can conclude that $x=-\sqrt{3} / 3$ is also a global maximum point and $x=\sqrt{3} / 3$ a global minimum point. The values of these maximum and minimum are

$$
f\left(-\frac{\sqrt{3}}{3}\right)=\ldots \quad \text { and } \quad f\left(\frac{\sqrt{3}}{3}\right)=\ldots
$$

Code B

The exercises are almost the same as with Code A: only limited changes in some coefficients occur. The solution strategies are exactly the same. So we only give the detailed results of the calculations.

Exercise 1. Given the function

$$
f(x)= \begin{cases}\mathrm{e}^{x}+a, & \text { if } x<0 \\ -3 x^{2}+x+2, & \text { if } 0 \leq x \leq 1, \\ \ln (3 x-2)+b, & \text { if } x>1\end{cases}
$$

a) find a and b so that that the function is continuous everywhere;
b) say whether the obtained function is differentiable at $x=0$;
c) say whether the obtained function is differentiable at $x=1$;
d) compute

$$
\int_{-1}^{1} f(x) \mathrm{d} x .
$$

Solution. $a=-1, b=0$. Differentiable at $x=0$, not differentiable at $x=1$.

$$
\int_{-1}^{1} f(x) \mathrm{d} x=\int_{-1}^{0}\left(\mathrm{e}^{x}-1\right) \mathrm{d} x+\int_{0}^{1}\left(-3 x^{2}+x+2\right) \mathrm{d} x=\left[\mathrm{e}^{x}-x\right]_{-1}^{0}+\left[-x^{3}+\frac{x^{2}}{2}+2 x\right]_{0}^{1}=\ldots
$$

Exercise 2. Given the function

$$
f(x)=3 x^{2}-8
$$

a) find its antiderivative, say $F(x)$, for which $F(0)=-3$;
b) compute the local maximum and minimum points of $F(x)$;
c) say whether F has global maximum and/or minimum;
d) compute the inflection points of F.

Solution. $F(x)=x^{3}-8 x-3$. The points

$$
-\sqrt{\frac{8}{3}} \text { and } \sqrt{\frac{8}{3}}
$$

are, respectively, a local maximum and a local minimum point. The function has no global maximum or minimum because the limits $x \rightarrow \pm \infty$ are $\pm \infty$. The point 0 is the only inflection point.
Exercise 3. Given the function

$$
f(x)= \begin{cases}\ln (x)+1, & \text { if } x>1 \\ a x^{3}+b x+1, & \text { if } x \leq 1\end{cases}
$$

a) find a and b such that f is everywhere continuous and differentiable;
b) find the limits

$$
\lim _{x \rightarrow+\infty} f(x), \lim _{x \rightarrow-\infty} f(x) ;
$$

c) consider the function only in the interval $[-1,1]$ and find its global maximum and minimum.

Solution. The function is everywhere continuous and differentiable if and only if $a=1 / 2$ and $b=-1 / 2$. The requested limits are $\pm \infty$. The global maximum and minimum are respectivley

$$
f\left(-\frac{\sqrt{3}}{3}\right) \quad \text { and } \quad f\left(\frac{\sqrt{3}}{3}\right)
$$

[^0]: ${ }^{1}$ Remember that in order to find inflection points we need to compute the sign of the second derivative, not only the points where it is 0 . For example the second derivative of $g(x)=x^{4}$ is $12 x^{2}$: this is 0 as $x=0$, but this function has no inflection points, it is always convex (the second derivative is never negative!).

