Exam type exercises

Luciano Battaia

November 18, 2016

These exercises are samples of the exercises that will be proposed at the written exam. Only a selected number of questions for each exercise will be proposed in the actual problems at the exam. All these exercises have been solved in class.

Exercise 1. Given the function

$$
f(x)= \begin{cases}\ln (1-x)+2 b, & \text { if } x<0 ; \\ 5 x^{2}+a, & \text { if } 0 \leq x \leq 1 ;, \\ 2^{x}-3, & \text { if } x>1 ;\end{cases}
$$

a) find a and b so that that the function is continuous everywhere;
b) is the obtained function differentiable?
c) compute

$$
\int_{0}^{2} f(x) \mathrm{d} x
$$

Exercise 2. Given the function

$$
f(x)=\frac{x^{3}-3 x+a}{x}
$$

1. compute

$$
\int f(x) \mathrm{d} x
$$

2. find a so that

$$
\int_{1}^{2} f(x) \mathrm{d} x=-\frac{2}{3} ;
$$

3. after giving $a=1$, find the limits

$$
\lim _{x \rightarrow 0^{ \pm}} f(x), \quad \lim _{x \rightarrow \pm \infty} f(x) ;
$$

4. find where the function is increasing and decreasing; find all local and global maxima and minima, if they exist;
5. find whether the function is convex or concave and the inflection points.

Exercise 3. Given the function

$$
f(x)=\ln \left(x^{3}+x^{2}\right),
$$

a) find its natural domain;
b) find the limits at the boundaries of the domain; find whether this function bas a maximum and/or minimum;
c) find all local maxima and minima; find whether the function is convex or concave in its natural domain;
d) find its maximum and minimum in the interval $[1,10] ;$
e) find whether the function is concave or convex in the interval $[1,10]$.

Exercise 4. Given the function

$$
f(x)=2\left(1-\mathrm{e}^{-6 x}\right), \quad \text { with } \quad x \geq 0
$$

a) find its asymptotes;
b) find whether the function is increasing or decreasing and its local and global maxima and minima;
c) find whether the function is convex or concave;
d) find the linear and quadratic approximations at $x=0$;
e) compute

$$
\int f(x) \mathrm{d} x
$$

f) compute

$$
\int_{0}^{+\infty}(f(x)-2) \mathrm{d} x
$$

Exercise 5. Given the function

$$
f(x)=\frac{\mathrm{e}^{-\sqrt{x}}}{2 \sqrt{x}}
$$

a) find its natural domain and the limits at the boundaries of this domain;
b) find the asymptotes, if existing;
c) find where $f>0$ in its domain;
d) compute $f^{\prime}(x)$ and find where the function is increasing and/or decreasing and the maximum and minimum, if they exist;
e) compute

$$
\int_{0}^{+\infty} f(x) \mathrm{d} x
$$

by splitting the integral as follows

$$
\int_{0}^{+\infty} f(x) \mathrm{d} x=\int_{0}^{1} f(x) \mathrm{d} x+\int_{1}^{+\infty} f(x) \mathrm{d} x
$$

f) what is the geometrical meaning of this integral?

Exercise 6. a) Compute by parts

$$
\int x \ln x \mathrm{~d} x
$$

b) given the function

$$
f(x)=\left\{\begin{array}{ll}
x \ln x, & \text { if } x \geq 1 ; \\
-x^{2}+x+a, & \text { if } x<1 ;
\end{array}\right. \text {, }
$$

find a, if it exists, so that f is continuous;
c) compute

$$
\int_{1}^{x} f(t) \mathrm{d} t
$$

Exercise 7. Given the function

$$
f(x)=(x+1) \mathrm{e}^{x},
$$

a) Compute

$$
\lim _{x \rightarrow+\infty} f(x) ;
$$

b) observe that

$$
f(x)=\frac{x+1}{\mathrm{e}^{-x}}
$$

and compute

$$
\lim _{x \rightarrow-\infty} f(x) ;
$$

c) find where f is positive or negative;
d) compute $f^{\prime}(x)$ and find local and global maxima and minima;
e) compute $f^{\prime \prime}(x)$ and find where the function is convex/concave and the inflection points;
f) compute the antiderivative that has the value 1 when x is 0 .

Exercise 8. Determine $f(x)$ assuming $f^{\prime \prime}(x)=x-\sqrt{x}, f^{\prime}(0)=0, f(1)=0$. Then compute the integral

$$
\int_{1}^{3} f(x) \mathrm{d} x
$$

