Mockup of Partial Examination - 1.4

Luciano Battaia

October 22, 2016

In the first partial only three exercises will be set.
Exercise 1. a) Compute by parts

$$
\int x \mathrm{e}^{-x / 2} \mathrm{~d} x .
$$

b) Given

$$
f(x)= \begin{cases}-x, & \text { if } x \leq 0 ; \\ x \mathrm{e}^{-x / 2}, & \text { if } x>0 ;\end{cases}
$$

compute

$$
\int_{-1}^{1} f(x) \mathrm{d} x .
$$

c) Say whether

$$
\int_{0}^{+\infty} f(x) \mathrm{d} x
$$

converges.
Exercise 2. Given the function

$$
f(x)=2-\frac{1}{x}-\ln x, \quad x \geq \frac{1}{2},
$$

a) determine the natural domain;
b) determine the limits at the boundaries of the domain;
c) determine the intervals where f is increasing/decreasing and maximum and minimum points (if there exists any);
d) determine the intervals where f is convex/concave and the inflection points;
e) compute

$$
\int f(x) \mathrm{d} x
$$

Exercise 3. Given the function

$$
f(x)=\frac{x^{2}+2 x+4}{x},
$$

a) determine the natural domain;
b) determine the limits at the boundaries of the domain;
c) determine the intervals where f is increasing/decreasing and maximum and minimum points (if there exists any);
d) determine the intervals where f is convex/concave and the inflection points;
e) compute

$$
\int f(x) \mathrm{d} x
$$

Exercise 4. a) Compute the limit

$$
\lim _{x \rightarrow 0^{+}} x \ln x
$$

using l'Hôpital's rule and observing that

$$
x \ln x=\frac{\ln x}{1 / x}
$$

b) Given the function

$$
f(x)= \begin{cases}\mathrm{e}^{-x}, & \text { if } x \leq 0 ; \\ x \ln x+a, & \text { if } x>0 ;\end{cases}
$$

find the value of the parameter a so that the function is continuous.
c) Say whether the obtained function is differentiable.
d) Consider the function only in the interval] $0,+\infty$ [and find, if there exists any, the maximum, minimum and inflection points.
e) Compute

$$
\int_{1}^{\mathrm{e}} f(x) \mathrm{d} x
$$

