Mockup of Partial Examination - 1.2

Luciano Battaia

October 8, 2016

Exercise 1. Given the function

$$
f(x)=\mathrm{e}^{\frac{2 x}{x^{2}+3}},
$$

a) compute the natural domain and the limits at the boundary of the domain;
b) say where f is increasing or decreasing;
c) compute, if they exist, the maximum and minimum of f.

Exercise 2. Consider the function

$$
f(x)=x^{3}-x^{2}-\frac{x^{4}}{4}
$$

a) Say where f is positive or negative in its natural domain.
b) Compute $f^{\prime}(x)$. Say where f is increasing and decreasing. Determine all local maximum and minimum points. Determine, if they exist, the maximum and minimum value of the function.
c) Compute $f^{\prime \prime}(x)$. Say where f is convex or concave.
d) Consider f only in the interval $[0,3]$. Find the maximum and minimum values of f.

Exercise 3. Given the function

$$
g(x)= \begin{cases}x, & \text { if } 1 \leq x \leq 2 \\ x+1, & \text { if } 2<x \leq 5\end{cases}
$$

a) compute a formula for the function

$$
f(x)=\int_{1}^{x} g(t) \mathrm{d} t
$$

b) say whether f is continuous in $[1,5]$;
c) say whether f is differentiable in $[1,5]$.

Solutions follow in the next three pages.

But, before having a look at the solutions, try to solve the exercises by yourselves!!

Solution of Exercise 1

a) The natural domain is \mathbb{R}. To compute the requested limits we can compute at first the limits of the exponent. By using l'Hôpital's rule or the comparison between infinites we obtain easily that

$$
\lim _{x \rightarrow \pm \infty} \frac{2 x}{x^{2}+3}=0
$$

so we have

$$
\lim _{x \rightarrow \pm \infty} f(x)=\mathrm{e}^{0}=1
$$

and the line $y=1$ is an horizontal asymptote.
b) We have

$$
f^{\prime}(x)=\mathrm{e}^{\frac{2 x}{x^{2}+3}}\left(\frac{2 x}{x^{2}+3}\right)^{\prime}=\mathrm{e}^{\frac{2 x}{x^{2}+3}} \frac{2\left(x^{2}+3\right)-2 x(2 x)}{\left(x^{2}+3\right)^{2}}=\mathrm{e}^{\frac{2 x}{x^{2}+3}} \frac{6-2 x^{2}}{\left(x^{2}+3\right)^{2}} .
$$

The function is increasing in $]-\sqrt{3}, \sqrt{3}[$, and decreasing in $]-\infty,-\sqrt{3}[$ and in $] \sqrt{3},+\infty[$.
c) The minimum and maximum are attained at $x=-\sqrt{3}$ and $x=\sqrt{3}$, respectively and their values are

$$
e^{-\sqrt{3} / 3} \text { and } e^{\sqrt{3} / 3}
$$

Solution of Exercise 2

a) We have

$$
f(x)=-\frac{x^{2}}{4}\left(x^{2}-4 x+4\right)=-\frac{x^{2}}{4}(x-2)^{2} .
$$

The function is never positive and is zero when $x=0$ or $x=2$.
b) We have

$$
f^{\prime}(x)=3 x^{2}-2 x-x^{3}=-x\left(x^{2}-3 x+2\right) .
$$

We can now find where f^{\prime} is positive or negative, using the traditional graph of signs.

The function is increasing in $]-\infty, 0$ [and $] 1,2[$, decreasing in $] 0,1[$ and $] 2,+\infty[$. There are two (local and global) maximum points, $x=0$ and $x=2$, a local minimum point, $x=1$. There is no global minimum value, while the global maximum value is 0 .
c) We have

$$
f^{\prime \prime}(x)=-3 x^{2}+6 x-2 .
$$

This second derivative is positive in

$$
] 1-\frac{\sqrt{3}}{3}, 1+\frac{\sqrt{3}}{3}[
$$

and in this interval the function is convex. Outside it is concave.
d) If the function is restricted in the interval $[0,3]$, the maximum and minimum exist and, as a consequence of previous calculations, we conclude that the maximum is 0 and the minimum $f(3)=-9 / 4$.

Solution of Exercise 3

a) If $x \leq 2$ we have

$$
\int_{1}^{x} g(t) \mathrm{d} t=\int_{1}^{x} t \mathrm{~d} t=\left[\frac{t^{2}}{2}\right]_{1}^{x}=\frac{x^{2}}{2}-\frac{1}{2} .
$$

If $x>2$ we have

$$
i n t_{1}^{x} g(t) \mathrm{d} t=\int_{1}^{2} t \mathrm{~d} t+i n t_{2}^{x}(t+1) \mathrm{d} t=\left[\frac{t^{2}}{2}\right]_{1}^{2}+\left[\frac{t^{2}}{2}+t\right]_{2}^{x}=\frac{x^{2}}{2}+x-\frac{5}{2}
$$

In summary

$$
f(x)= \begin{cases}\frac{x^{2}}{2}-\frac{1}{2}, & \text { if } 1 \leq x \leq 2 \\ \frac{x^{2}}{2}+x-\frac{5}{2}, & \text { if } 2<x \leq 5\end{cases}
$$

b) It is easy to see that

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{+}} f(x)=f(2)=\frac{3}{2},
$$

so f is continuous everywhere.
c) We have

$$
f^{\prime}(x)= \begin{cases}x, & \text { if } 1 \leq x<2 \\ x+1, & \text { if } 2<x \leq 5\end{cases}
$$

As

$$
\lim _{x \rightarrow 2^{-}} f^{\prime}(x)=2 \neq \lim _{x \rightarrow 2^{+}} f^{\prime}(x)=3
$$

the function is not differentiable at 2 .

