Mockup of Partial Examination 1.1

Luciano Battaia

October 8, 2016

Exercise 1.

a) Given

$$
g(x)=\frac{\mathrm{e}^{2 x}-1}{x},
$$

compute

$$
\lim _{x \rightarrow 0} g(x) \text { and } \lim _{x \rightarrow 0} g^{\prime}(x) .
$$

b) If a and b are real parameters, define

$$
f(x)= \begin{cases}g(x), & \text { if } x<0 ; \\ a\left(\mathrm{e}^{-x}-1\right)+b, & \text { if } x \geq 0 .\end{cases}
$$

Say for what values of a and b the function is continuous on \mathbb{R}.
c) Say for what values of a and b the function is differentiable on \mathbb{R}.

Exercise 2. Given the function

$$
f(x)=x-\ln (1+x),
$$

a) Compute the natural domain of f.
b) Say where f is increasing or decreasing.
c) Calculate $\lim _{x \rightarrow-1^{+}} f(x)$.
d) Calculate

$$
\lim _{x \rightarrow+\infty} \frac{\ln (1+x)}{x}
$$

e) Observe that

$$
f(x)=x\left(1-\frac{\ln (1+x)}{x}\right)
$$

and calculate

$$
\lim _{x \rightarrow+\infty} f(x) .
$$

f) Say iff has a maximum and/or minimum value.

Exercise 3.

a) Compute by parts

$$
\int\left(x \mathrm{e}^{x}\right) \mathrm{d} x
$$

b) Given

$$
f(x)= \begin{cases}x^{2}, & \text { if } x<0 ; \\ x \mathrm{e}^{x}, & \text { if } x \geq 0 ;\end{cases}
$$

compute

$$
\int_{-1}^{1} f(x) \mathrm{d} x .
$$

Solutions follow in the next three pages.
But, before having a look at the solutions, try to solve the exercises by yourselves!!

Solution of Exercise 1

a) As we obtain the indeterminate form $0 / 0$, let's apply l'Hôpital's rule:

$$
\lim _{x \rightarrow 0} \frac{\mathrm{e}^{2 x}-1}{x} \stackrel{(H)}{=} \lim _{x \rightarrow 0} \frac{2 \mathrm{e}^{2 x}}{1}=2 .
$$

Next we compute the derivative of g :

$$
g^{\prime}(x)=\frac{2 \mathrm{e}^{2 x} x-\left(\mathrm{e}^{2 x}-1\right) 1}{x^{2}}=\frac{2 x \mathrm{e}^{2 x}-\mathrm{e}^{2 x}+1}{x^{2}}
$$

If we try to compute $\lim _{x \rightarrow 0} g^{\prime}(x)$ we obtain again the indeterminate form $0 / 0$, so we apply l'Hôpital's rule:

$$
\lim _{x \rightarrow 0} \frac{2 x \mathrm{e}^{2 x}-\mathrm{e}^{2 x}+1}{x^{2}}=\lim _{x \rightarrow 0} \frac{2 \mathrm{e}^{2 x}+4 x \mathrm{e}^{2 x}-2 \mathrm{e}^{2 x}}{2 x}=\lim _{x \rightarrow 0} \frac{2 \mathrm{e}^{2 x}}{1}=2 .
$$

b) The only problem as regards continuity may arise at 0 . In order that the function is conitnuous at 0 we require

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)=f(0),
$$

that is

$$
\lim _{x \rightarrow 0^{-}} \frac{\mathrm{e}^{2 x}-1}{x}=\lim _{x \rightarrow 0^{+}} a\left(\mathrm{e}^{-x}-1\right)+b=f(0) \Rightarrow b=2 .
$$

The function is continuous for $b=2$ and any choice of a.
c) The derivative of g as $x \neq 0$ is

$$
f^{\prime}(x)= \begin{cases}g^{\prime}(x), & \text { if } x<0 \\ -a \mathrm{e}^{-x}, & \text { if } x>0\end{cases}
$$

The function is differentiable at 0 if

$$
\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)
$$

and both limits are finite. As

$$
\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{-}} g^{\prime}(x)=2 \text { and } \quad \lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\lim _{x \rightarrow 0^{-}}\left(-a \mathrm{e}^{-x}\right)=-a
$$

the function is differentiable if $a=-2$ (and $b=2$ so that it is continuous).

Solution of Exercise 2

a) The only condition for the natural domain is $1+x>0$, so that the domain is $]-1,+\infty[$.
b) The derivative of the function is

$$
f^{\prime}(x)=1-\frac{1}{1+x}=\frac{x}{1+x}
$$

hence the function is increasing if $x>0$, decreasing if $-1<x<0$. It has a relative minimum at $x=0$.
c) We have

$$
\lim _{x \rightarrow-1^{+}} x-\ln (1+x)=-1-\ln \left(0^{+}\right)=1-(-\infty)=1+\infty=+\infty .
$$

d) The required limit is in the indeterminate form ∞ / ∞, so we can apply l'Hôpital's rule:

$$
\lim _{x \rightarrow+\infty} \frac{\ln (1+x)}{x} \stackrel{\text { Hौ }}{=} \lim _{x \rightarrow+\infty} \frac{\frac{1}{1+x}}{1}=0 .
$$

e) As a consequence of the last limit, we have

$$
\lim _{x \rightarrow+\infty} f(x)=+\infty(1-0)=+\infty .
$$

f) As a consequence of all previous calculations f han non maximum value and a minimum value of 0 attained at $x=0$.

Solution of Exercise 3

a) We have

$$
\int\left(x \mathrm{e}^{x}\right) \mathrm{d} x=\int\left(\mathrm{e}^{x} x\right) \mathrm{d} x=\mathrm{e}^{x} x-\int\left(\mathrm{e}^{x} \cdot 1\right) \mathrm{d} x=x \mathrm{e}^{x}-\mathrm{e}^{x}
$$

b) In order to calculate the requested integral we must split the interval $[-1,1]$ into two parts: $[-1,0[\cup[0,1]$. We obtain

$$
\begin{aligned}
\int_{-1}^{1} f(x) \mathrm{d} x=\int_{-1}^{0} x^{2} \mathrm{~d} x+\int_{0}^{1} x \mathrm{e}^{x} \mathrm{~d} x=\left[\frac{x^{3}}{3}\right]_{-1}^{0} & +\left[x \mathrm{e}^{x}-\mathrm{e}^{x}\right]_{0}^{1}= \\
& =\left[0-\left(\frac{-1}{3}\right)\right]+[(\mathrm{e}-\mathrm{e})-(0-1)]=\frac{1}{3}+1=\frac{4}{3}
\end{aligned}
$$

