Università degli studi di Udine - Sede di Pordenone

Facoltà di Scienze della Formazione - Corso di Laurea in STM

Corso di Matematica e Statistica

Prima prova parziale A.A.2011/2012 - 8 novembre 2011

Cognome:															
Nome:															
Matr:															
Acconse	Acconsento alla pubbl. dei risultati sul sito web del docente														
Non acc	Non acconsento alla pubbl. dei risultati sul sito web del docente														

Tutte le risposte devono essere giustificate!

Esercizio 1

Esplicitare la scrittura seguente e calcolarne il valore.

$$\sum_{i=1}^{3} \left(\prod_{j=0}^{2} (i-2j) \right) .$$

Esercizio 2

Se $A = \{a, b, c\}$, scrivere esplicitamente l'insieme $\mathscr{P}(A)$.

prof.Luciano Battaia

Esercizio 3

Semplificare la seguente espressione contenente valori assoluti (non usare valori approssimati per i radicali!!).

$$\left|\sqrt{3}-4\right|-\left|3-\sqrt{3}\right|$$
.

Esercizio 4

Usando solo le funzioni elementari, e senza l'uso di limiti e derivate, tracciare il grafico della seguente funzione $f: \mathbb{R} \to \mathbb{R}$.

$$f(x) = \begin{cases} \frac{1}{x}, & \text{se } x > 1\\ -x^2 + 1, & \text{se } x \le 1 \end{cases}.$$

Esercizio 5

Relativamente alla funzione tracciata al punto 4 dire se è continua oppure no, *giustificando* la risposta.

Esercizio 6

Relativamente alla funzione tracciata al punto 4 calcolare

$$\lim_{x \to -\infty} f(x);$$

$$\lim_{x \to 0} f(x);$$

$$\lim_{x \to 1^{-}} f(x);$$

$$\lim_{x \to 1^{+}} f(x);$$

$$\lim_{x \to +\infty} f(x).$$

prof.Luciano Battaia 2

Esercizio 7

Calcolare il seguente limite usando la regola di l'Hôpital, *spiegando* perché la regola si può applicare.

$$\lim_{x \to +\infty} \frac{e^{x^2} + x}{x^2} \,.$$

Esercizio 8

Trovare gli eventuali asintoti orizzontali e verticali della seguente funzione.

$$f(x) = \frac{x - 1}{x^2 - 4} \,.$$

Esercizio 9

Trovare quando la seguente funzione è crescente e quando è decrescente.

$$f(x) = \frac{x^3}{3} - \frac{3x^2}{2} + 2x.$$

Esercizio 10

Trovare la derivata seconda della seguente funzione.

$$f(x) = e^{\sin x} + \ln(x).$$

Esercizio 11

Trovare l'area della regione finita di piano compresa tra l'asse delle ascisse, le rette x=2 e x=4 e il grafico della funzione $f(x)=x^2-x$. Rappresentare graficamente quest'area.

Esercizio 12

Sapendo che una primitiva di $2xe^{x^2}$ è e^{x^2} , calcolare il seguente integrale:

$$\int_{-1}^{1} 2x e^{x^2} + x \, dx.$$

prof.Luciano Battaia 4